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1 Two-qubit gate: CNOT
The controlled-not (CNOT) gate exors the first qubit into thesecond qubit (

∣

∣a,b
〉

→
∣

∣a,a⊕ b
〉

=
∣

∣a,a +
b mod 2

〉

). Thus it permutes the four basis states as follows:

00→ 00 01→ 01

10→ 11 11→ 10 .

As a unitary 4×4 matrix, the CNOT gate is









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









In a quantum circuit diagram, the CNOT gate has the followingrepresentation. The upper wire is called the
control bit, and the lower wire the target bit.

t

d

It turns out that this is the only two qubit gate we need to think about . . .

2 Bell states (EPR pairs)
There are four Bell states:

∣

∣Φ±〉

= 1√
2

(∣

∣00
〉

±
∣

∣11
〉)

∣

∣Ψ±〉

= 1√
2

(∣

∣01
〉

±
∣

∣10
〉)

.

These are maximally entangled states on two qubits. They cannot be product states because there are no
cross terms.

Consider one of the Bell states (also known as a EPR pair):

∣

∣Ψ−〉

=
1√
2
(
∣

∣01
〉

−
∣

∣10
〉

)

Measuring the first qubit of
∣

∣Ψ−〉

in the standard basis yields a 0 with probability 1/2, and 1 with probability
1/2. Likewise, measuring the second qubit of

∣

∣Ψ−〉

yields the same outcomes with the same probabilities.
Thus measuring one, and only one, qubit of this state yields aperfectly random outcome.
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However, determining either qubitexactly determines the other. For example, if qubit 1 is measured and
gives a 0, this projects the Bell state onto the state

∣

∣01
〉

and the second qubit is then definitely a 1.

Furthermore, measurement of
∣

∣Ψ−〉

in any basis will yield opposite outcomes for the two qubits.To see
this, check that

∣

∣Ψ−〉

= 1√
2

(∣

∣vv⊥
〉

−
∣

∣v⊥v
〉)

, for any
∣

∣v
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

,
∣

∣v⊥
〉

= ᾱ
∣

∣1
〉

− β̄
∣

∣0
〉

.

We can generate the Bell states with a Hadamard gate and a CNOTgate. Consider the following diagram:

H t

d

The first qubit is passed through a Hadamard gate and then bothqubits are entangled by a CNOT gate.

If the input to the system is|0〉⊗ |0〉, then the Hadamard gate changes the state to

1√
2
(|0〉+ |1〉)⊗|0〉 = 1√

2
|00〉+ 1√

2
|10〉 ,

and after the CNOT gate the state becomes1√
2
(|00〉+ |11〉), the Bell state|Φ+〉. In fact, one can verify that

the four possible inputs produce the four Bell states:

|00〉 7→ 1√
2
(|00〉+ |11〉) = |Φ+〉; |01〉 7→ 1√

2
(|01〉+ |10〉) = |Ψ+〉;

|10〉 7→ 1√
2
(|00〉− |11〉) = |Φ−〉; |11〉 7→ 1√

2
(|01〉− |10〉) = |Ψ−〉.

3 EPR Paradox
In 1935, Einstein, Podolsky and Rosen (EPR) wrote a paper ”Can quantum mechanics be complete?” [Phys.
Rev. 47, 777, Available online via PROLA:http://prola.aps.org/abstract/PR/v47/i10/p777_1]

For example, consider coin-flipping. We can model coin-flipping as a random process giving heads 50% of
the time, and tails 50% of the time. This model is perfectly predictive, but incomplete. With a more accurate
experimental setup it would in principle be possible to follow the dynamics of the coin and to determine
precisely the range of initial parameters for which the coinends up heads, and the range for which it ends
up tails.

We saw above that for a Bell state, when you measure first qubit, the second qubit is completely determined.
However, if two qubits are far apart, then the second qubit must have had a determined state in some time
intervalbefore measurement, since the speed of light is finite. Moreover this holds in any basis. This appears
analogous to the coin flipping example, i.e., there might be amore complete description which allows the
qubit states to be predicted. EPR therefore suggested that there is a more complete theory where“God does
not throw dice”.

EPR made two assumptions:

i) reality principle - the values of physical quantities have physical reality independent of whether a mea-
surement of them is made or not.

ii) locality principle - the result of a measurement on one system cannot influence the result of a measurement
on the second system
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These two assumptions give rise to a contradiction, nicely illustrated by the analysis of the two qubits in a
Bell state, due to Bohm. See Benenti et al., Sec. 2.5. A sourceemits the Bell state

∣

∣Ψ−〉

=
1√
2
(
∣

∣01
〉

−
∣

∣10
〉

)

and sends one qubit to Alice, and one to Bob. If Alice measuresher qubit in the standard basis and e.g.,
gets a 1, then Bob will get a 0 upon measuring in the standard basis. On the other hand, if Alice measures
her qubit in the Hadamard basis{

∣

∣+
〉

,

∣

∣−
〉

}, and gets a +, then Bob will get a - in the Hadamard basis.
However, the states

∣

∣0
〉

and
∣

∣−
〉

are not the same, they differ by a Hadamard rotation. Which state Bob
ends up with depends on the measurement made by Alice. This contradicts the assumption of locality. EPR
concluded that such situations imply that quantum mechanics is not a complete theory of the physical world.

What would a more complete theory look like? Here is the most extravagant framework. . . When the entan-
gled state is created, the two particles each make up a (very long!) list of all possible experiments that they
might be subjected to, and decide how they will behave under each such experiment. When the two parti-
cles separate and can no longer communicate, they consult their respective lists to coordinate their actions.
To describe such behavior one would have to invoke the existence of ’local hidden variables’ that are not
evident in the quantum description.

It was not until 1964, almost three decades later, that a verifiable and quantitative measure of the local realism
assumption was provided. This was given by Bell, who constructed correlation functions of the measure-
ments of Alice and Bob that satisfy a strict inequality underthe assumptions of local realism. However, the
quantum analog of the correlation functions can violate theinequality for certain choices of measurement
basis. The Bell inequality was subsequently tested experimentally in 1981 by Aspect and co-workers, using
Bell (EPR) pairs constructed from photon polarization states. Aspect et al. found that indeed nature does not
obey the Bell inequalities and so violates local realism. This is consistent with the predictions of quantum
mechanics for EPR pairs summarized above and supports the view that nothingcan be known about the
quantum state until a measurement is made. It also tells us that the quantum correlations in an EPR pair are
’stronger’ than classical correlations. A detailed analysis of the Bell inequality for

∣

∣Ψ−〉

can be found at
http://minty.caltech.edu/Ph195/downloads.htm (lecture 10/24, pp. 11-15).

For further reading on the EPR paradox, Bell’s inequality, and the experimental verification of violation of
this by quantum systems, see

1. Styer, Ch. 6

2. D. Mermin, Physics Today vol. 38(4), April 1985, pp. 38-47.
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Nonlocality and Bell Inequalities

(Based on the discussion in Chris Isham’s book, Lectures on Quantum Theory:
Mathematical and Structural Foundations (Imperial College Press, 1995).)
Say we have two experimenters, Alice and Bob, whose labs are located many kilometers
apart. Their labs are basically identical, actually, each consisting of one particle ‘detector’
that has one meter, one switch, and a bell. The meter is for reading out the result of a
measurement (which we assume to be either ±1), while the switch is used to select which of
two types of measurements the experimenter would like to make. On Alice’s side we’ll label
the two possibilities A and A′, and on Bob’s side B and B′. The bell rings each time a particle
hits the detector, letting the experimenter know when he or she can read out the result of
his/her selected measurement.

So where do these particles come from? Midway between Alice’s lab and Bob’s there is a
‘pair source.’ This source always produces particles in pairs, sending one to Alice and the
other to Bob. We assume that the particles have some internal degree of freedom, which is
what Alice’s and Bob’s detectors are designed to measure. The pair source prepares the
internal states of the particles in some unknown, possibly random fashion.

The ‘experiment’ consists of the following procedure. The source prepares and emits one
pair of particles per unit of time, so Alice and Bob know that they may expect to receive
particles at a regular rate. Once per unit time, they each (independently) select a random
setting for their switch, wait for their bell to ring, and then read off and write down the
measurement result.

Hence after ten rounds, e.g., Alice’s and Bob’s lab books might look something like this:
Alice Bob

A −1

A +1

A′
+1

A +1

A′
−1

A′
−1

A +1

A′
−1

A +1

A −1

B′
−1

B′
−1

B +1

B +1

B −1

B′
+1

B −1

B′
+1

B′
+1

B +1

    1

11
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Although this experimental scenario seems extremely general, it turns out that we have
already specified enough to derive some important predictions about the statistics of Alice’s
and Bob’s measurement records!

Let’s start by making some reasonable assumptions about the overall behavior of the
experiment:

1. Local determinism – we might like to believe that the result of Alice’s measurement
(either A or A′) is locally determined by the physical state of the particle she receives
from the pair source. It should not depend on the state of Bob’s particle, since in this
scenario Bob could be really far away! And the result of Alice’s measurement certainly
should not depend on Bob’s choice of measurement – that is, whether Alice’s meter
reads + or −1 should not depend on whether Bob has his switch set to B or B′...

2. Objective reality – Even though Alice (and Bob) must choose to make one
measurement or the other (A or A′) on any given particle, each particle ‘knows’ what its
value is for both measurements. That is, sufficient information to determine the
outcome of either measurement is encoded in the internal state of each particle.

Under these assumptions, we can write down the following model for this experiment. In
each round, the pair souce produces a pair of particles with the following information
encoded in their internal states:

An = ±1, An
′
= ±1, Bn = ±1, Bn

′
= ±1.     2

Here the four possible measurement labels are treated as random variables, with the
subscript labelling the round. As a logical consequence of local determinism and objective
realism, we can assume the existence of a joint probability distribution PA , A′ , B , B′ .
Hence, it should be meaningful to consider correlation functions of all four random variables
simultaneously, and these correlation functions should be measurable by Alice and Bob.

Consider the following function of the random variables,

gn = AnBn + An
′ Bn + AnBn

′
− An

′ Bn
′ .     3

Were we to tabulate the 16 possible values of gn, we would magically find that gn = ±2.
However, an easier way to see this is to note that the last term in the sum is equal to the
product of the first three, since An

2
= An

′ 
2
= Bn

2
= Bn

′ 
2
= +1 :

An
′ Bn

′
= AnBn An

′ Bn AnBn
′ 

= An
2 Bn

2 A n
′ Bn

′ .     4

Then if An
′ Bn

′
= +1, the set AnBn , An

′ Bn , AnBn
′  has either zero or two −1’s, hence

gn = AnBn + An
′ Bn + AnBn

′
− An

′ Bn
′ must be either +2 or −2. If on the other hand An

′ Bn
′
= −1, the

set must have either zero or two +1’s, hence gn must be either −2 or +2.

In any case, it follows that

12
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1
N ∑

n=1

N

gn =

1
N ∑

n=1

N

AnBn +∑
n=1

N

An
′ Bn +∑

n=1

N

AnBn
′
−∑

n=1

N

An
′ Bn

′

≤ 2.     5

This is one form (due to Clauser, Horne, Shimony, and Holt) of Bell’s famous inequality.

It should be noted that at this point, all we have relied on in our derivation is basic
probability theory! Hence the Bell Inequality is a model-independent prediction about
measurement statistics in a world that is locally deterministic and allows objective realism.

Hence experimental violations of the Inequality actually tell us something about Nature,
not just quantum theory!

As it turns out, one can actually go to the lab and perform experiments of precisely the type
described above, and find that this inequality is strongly violated! For example, see
• G. Weihs et al, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,”

Phys. Rev. Lett. 81, 5039-5043 (1998);
• W. Tittel et al, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys.

Rev. Lett. 81, 3563-3566 (1998);
• A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature 398, 189-190 (1999).

In experiments of this type, the key is to construct a source that produces pairs of photons
an entangled state such as

|Ψab 〉 = 1
2

|0a1b 〉 − |1a0b 〉.     6

In each round of the experiment, Alice’s two measurements correspond to the observables
A = σz

a and A′
= cosφσz

a
+ sinφσx

a, where
σz

a
= |0a 〉〈0a | − |1a 〉〈1a |,

σx
a
= |0a 〉〈1a | + |1a 〉〈0a |.     7

On Bob’s side we choose B = σz
b and B ′

= cosφσz
b
− sinφσx

b. The eigenvalues of A and B
are clearly ±1, and it turns out that those of A′ and B ′ are also ±1. For example, the
eigenstates of cosφσz + sinφσx are simply

0̃ = cos
φ

2
|0〉 + sin

φ

2
|1〉,

1̃ = sin
φ

2
|0〉 − cos

φ

2
|1〉.     8

Hence A′ corresponds to projectors on a basis that is rotated from that of A by an angle φ/2
(and similarly a rotation of −φ/2 for B,B ′).

Now we can compute the necessary correlation functions using the standard quantum
probability rules:

13
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1
N ∑

n=1

N

AnBn = 〈A⊗ B〉

= P0
aP0

b
+ P1

aP1
b

− P0
aP1

b
− P1

aP0
b

= −1.     9

Similarly,

1
N ∑

n=1

N

AnBn
′
= 〈P0

a cosφσz
b 〉 − 〈P0

a sinφσx
b 〉 − 〈P1

a cosφσz
b 〉 + 〈P1

a sinφσx
b 〉

= −

1
2

cosφ − 1
2

cosφ = −cosφ.

1
N ∑

n=1

N

An
′ Bn = P0

b cosφσz
a

+ P0
b sinφσx

a
− P1

b cosφσz
a

− P1
b sinφσx

a

= −cosφ.

1
N ∑

n=1

N

An
′ Bn

′
= 〈cos2φσz

a
σz

b 〉 + 〈cosφ sinφσz
a
σx

b 〉 − 〈cosφ sinφσx
a
σz

b 〉

− sin2φσx
a
σx

b

=

cos2φ

2
−1 − 1 −

sin2φ

2
−1 − 1 = sin2φ − cos2φ

= −cos2φ.     10

Finally, we can construct the overall quantity

1
N ∑

n=1

N

gn = |−1 − 2cosφ + cos2φ |

= |1 + 2cosφ − cos2φ |.     11

Plotting this, we find that the Bell Inequality is violated (〈gn 〉 > 2) for 0 < φ < 90∘:

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
0
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2
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φ  [d e g ]
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g

n
>

=
|1

+
2

c
o

sφ
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o
s
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φ
|
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So what’s going on here? From the graph we see that our Bell Inequality can be violated
when the two possible measurements that Alice and Bob can perform correspond to
projections on nonorthogonal bases. Hence what is being exploited here is the extra-strong
“quantum correlation” between two particles that have been prepared in an entangled state
such as

|Ψab 〉 = 1
2

|0a1b 〉 − |1a0b 〉.     12

ρab =
1
2
|0a1b 〉〈0a1b | + |1a0b 〉〈1a0b |

 pi, |Ψa
i 〉 ⊗ |Ψb

i 〉
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