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1 More on Measurements
Recall that the state of a single qubit can be written as a superposition over the possibilities 0 and 1:

∣

∣ψ
〉

=
α

∣

∣0
〉

+β
∣

∣1
〉

. Measuring in the standard basis, then, there is probability |α |2 that we get 0 and the new state
is

∣

∣ψ ′〉 =
∣

∣0
〉

, and probability|β |2 that we get 1 and
∣

∣ψ ′〉 =
∣

∣1
〉

.

A measurement can be written as a projector. A projectorPi =
∣

∣i
〉〈

i
∣

∣ takes a ket
∣

∣ψ
〉

and replaces it by its
component

∣

∣i
〉

, with amplitude
〈

i
∣

∣

∣

∣ψ
〉

. The spectral resolution of the identity defines a set of projectors. For
a general expansion

∣

∣ψ
〉

= ∑ j c j

∣

∣ j
〉

and an orthonormal basis{
∣

∣i
〉

}, we have the corresponding resolution
of the identity:

I = ∑
i

∣

∣i
〉〈

i
∣

∣ = ∑
i

Pi

E.g.,I =
∣

∣0
〉〈

0
∣

∣ +
∣

∣1
〉〈

1
∣

∣ for a two state basis.

Hence

Pi

∣

∣ψ
〉

=
∣

∣i
〉〈

i
∣

∣ψ
〉

= ∑
j

c j

〈

i
∣

∣ j
〉∣

∣ j
〉

= ∑
j

δi, j c j

∣

∣i
〉

= ci

∣

∣i
〉

Note: operators may generally be written in the formO = {
〈

a
∣

∣b
〉

}{a,b}.

More generally, we can measure the qubit in any orthonormal basis simply by projecting
∣

∣ψ
〉

onto the two
basis vectors. See Figure 1.

∣

∣0
〉

∣

∣1
〉

∣

∣ +
〉

= 1√
2
(
∣

∣0
〉

+
∣

∣1
〉

)

∣

∣ −
〉

= 1√
2
(
∣

∣0
〉

−
∣

∣1
〉

)

45◦

θ

∣

∣ψ
〉

= cos θ
∣

∣0
〉

+ sin θ
∣

∣1
〉

〈+
|ψ〉

〈−|ψ〉

Figure 1:
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The new state of the system
∣

∣ψ ′〉 is the outcome of the measurement. Alternatively, instead of measuring
the system in a rotated basis, we rotate the system (in the opposite direction) and measure it in the original,
standard basis.

∣

∣0
〉

∣

∣1
〉

∣

∣0′
〉

∣

∣1′
〉

φ

∣

∣ψ
〉

Heisenberg

〈0
′ |ψ〉

〈1 ′|ψ〉 ∣

∣0
〉

∣

∣1
〉

∣

∣ψ
〉

∣

∣ψ′
〉

φ

Schrödinger

〈0|ψ′〉

〈1|ψ
′〉

2 One-qubit Unitaries/Gates
Rotations over a complex vector space are called unitary transformations. For example, rotation byθ is
unitary. Reflection about the lineθ/2 is also unitary. Unitary operationsU satisfy

UU† = U†U = 1

i.e.,U† = U−1, the adjoint of the operator is equal to its inverse. (Recallthat in the matrix representation we
have[U†]i j = [U∗

ji = [UT ]∗i j)

One very important unitary is the time evolution operator

U = exp(−iHt)

whereH is the Hamiltonian operator of the quantum system. In computer science we usually analyze
quantum operations in terms of unitaries, or “gates”. To physically realize these gates we need to implement
the corresponding Hamiltonian operatorsH.

In order to manipulate a qubit, we must manipulate its state:

|ψ >= α |0>+β |1>

This is done by acting on|ψ > with unitary operators (i.e. gates) such that

Û |ψ >= α ′|0>+β ′|1>

whereÛ is a 2×2 unitary matrix.

Hadamard gate:

The Hadamard gate is a reflection about the lineθ = π/8. This reflection maps thex-axis to the 45◦ line,
and they-axis to the−45◦ line. That is

∣

∣0
〉 H−→ 1√

2

∣

∣0
〉

+ 1√
2

∣

∣1
〉

≡
∣

∣+
〉

(1)
∣

∣1
〉 H−→ 1√

2

∣

∣0
〉

− 1√
2

∣

∣1
〉

≡
∣

∣−
〉

. (2)
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In matrix form, we write

H =
1√
2

(

1 1
1 −1

)

.

Notice that, starting in
∣

∣ψ
〉

either
∣

∣0
〉

or
∣

∣1
〉

, H
∣

∣ψ
〉

when measured is equally likely to give 0 and 1. There
is no longer any distinguishing information in the bit. Thisinformation has moved to the phase (in the
computational basis).

In a quantum circuit diagram, we imagine the qubit travelling from left to right along the wire. The following
diagram shows the application of a Hadamard gate.

H

3 Two qubits
Now let us examine the case of two qubits. Consider the two electrons in two hydrogen atoms:

+
0

1

+
0

1

Since each electron can be in either of the ground or excited state, classically the two electrons are in one of
four states – 00, 01, 10, or 11 – and represent 2 bits of classical information. Quantum mechanically, they
are in a superposition of those four states:

∣

∣ψ
〉

= α00

∣

∣00
〉

+ α01

∣

∣01
〉

+ α10

∣

∣10
〉

+ α11

∣

∣11
〉

,

where∑i j|αi j|2 = 1. Again, this is just Dirac notation for the unit vector inC 4:









α00
α01
α10
α11









whereαi j ∈C , ∑ |αi j|2 = 1.

Measurement:

If the two electrons (qubits) are in state
∣

∣ψ
〉

and we measure them, then the probability that the first qubit

is in statei, and the second qubit is in statej is P(i, j) = |αi j|2. Following the measurement, the state of the
two qubits is

∣

∣ψ ′〉 =
∣

∣i j
〉

. What happens if we measure just the first qubit? What is the probability that the
first qubit is 0? In that case, the outcome is the same as if we had measured both qubits: Pr{1st bit = 0} =
|α00|

2 + |α01|
2. The new state of the two qubit system now consists of those terms in the superposition that

are consistent with the outcome of the measurement – but normalized to be a unit vector:

∣

∣φ
〉

=
α00

∣

∣00
〉

+ α01

∣

∣01
〉

√

|α00|
2 + |α01|

2

.
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A more formal way of describing this partial measurement is that the state vector is projected onto the
subspace spanned by

∣

∣00
〉

and
∣

∣01
〉

with probability equal to the square of the norm of the projection, or
onto the orthogonal subspace spanned by

∣

∣10
〉

and
∣

∣11
〉

with the remaining probability. In each case, the
new state is given by the (normalized) projection onto the respective subspace.

Tensor products (informal):

Suppose the first qubit is in the state
∣

∣φ1

〉

= α1

∣

∣0
〉

+ β1

∣

∣1
〉

and the second qubit is in the state
∣

∣φ2

〉

=
α2

∣

∣0
〉

+ β2

∣

∣1
〉

. How do we describe the joint state of the two qubits?

∣

∣φ
〉

=
∣

∣φ1

〉

⊗
∣

∣φ2

〉

= α1α2

∣

∣00
〉

+ α1β2

∣

∣01
〉

+ β1α2

∣

∣10
〉

+ β1β2

∣

∣11
〉

.

We have simply multiplied together the amplitudes of|0〉1 and |0〉2 to determine the amplitude of|00〉12,
and so on. The two qubits are not entangled with each other andmeasurements of the two qubits will be
distrbuted independently.

Given a general state of two qubits can we say what the state ofeach of the individual qubits is? The answer
is usually no. For a random state of two qubits is entangled — it cannot be decomposed into state of each
of two qubits. In the next lecture we will study the Bell states, which are maximally entangled states of two
qubits.

4 Hilbert Spaces
Consider a discrete quantum system that hask distinguishable states (e.g. a system that can be in one ofk
distinct energy states. The state of such a system is a unit vector in ak dimensional complex vector spaceC k.
The k distinguishable states form an orthogonal basis for the vector space - say denoted by{

∣

∣1
〉

, . . . ,
∣

∣k
〉

.
Here we are using the standard inner-product overC k to define orthogonality. Recall that the inner-product
of two vectors

∣

∣φ
〉

= ∑i αi

∣

∣i
〉

and
∣

∣ψ
〉

= ∑i βi

∣

∣i
〉

is ∑i ᾱiβi.

Dirac’s Braket Notation

We have already introduced the ket notation for vectors.

If |v〉 = ∑i αi|i〉 and|w〉 = ∑i βi|i〉, then we have already observed that

(~v,~w) =
(

α1 α2 · · · αd

)









β1
β2
· · ·
βd









.

We denote the row vector(α1 · · ·αd) by 〈v| and the inner product(~v,~w) by 〈v|w〉.
〈v| is abra, and|w〉 is aket, so〈v|w〉 is abraket.

To demonstrate the utility of this notation, let|v〉 be a vector of norm 1. DefineP = |v〉〈v|. Then for any|w〉
we haveP|w〉= |v〉〈v|w〉, soP is the projection operator onto|v〉 (see diagram.) Note thatP2 = |v〉〈v|v〉〈v| =
P since|v〉 has norm 1.

More abstractly, the state of a quantum system is a unit vector in a Hilbert space. A Hilbert space is a
complex vector space endowed with an inner-product and which is complete under the induced norm. The
vector space axioms give us notions of span and linear independence of a set of vectors. However, to
endow the vector space with geometry — the notion of angle between two vectors and the norm or length
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of a vector, we must define an inner-product — whose properties are listed below. The third property —
completeness — is trivially satisfied for a finite dimensional system, so we will not bother to define it here.

• An inner product on a (complex) vector spaceV is a map(·, ·) : V ×V → C satisfying for each
~u,~v,~w ∈V andα ,β ∈ C :

(i) (~v,~v) ≥ 0, and(~v,~v) = 0 if and only if~v =~0;

(ii) (α~u + β~v,~w) = α(~u,~w)+ β (~v,~w);

(iii) (~v,~w) = (~w,~v).

An inner product space is a vector space together with an inner product.

• Vectors~v,~w ∈V areorthogonal if (~v,~w) = 0.

• A basis for V is a set{~v1, · · · , ~vd} such that each~v ∈ V can be written uniquely in the form~v =
α1~v1 + · · ·+ αn~vn. The basis is said to beorthonormal if (~vi,~v j) = δi j for eachi, j. (Hereδi j = 1 if
i = j and 0 ifi 6= j.)

Note that we can associate to each inner product space a canonical norm, defined by‖~v‖ =
√

(~v,~v). A
Hilbert space is an inner product space which is complete with respect to its norm. IfV is finite-dimensional
(i.e. it has a finite basis), then completeness is automatically satisfied. Furthermore, there is only one Hilbert
space of each dimension (up to isomorphism.)

5 Tensor Products
Consider two quantum systems - the first withk distinguishable (classical) states (associated Hilbert space
C k), and the second withl distinguishable states (associated Hilbert spaceC l). What is the Hilbert space as-
sociated with the composite system? We can answer this question as follows: the number of distinguishable
states of the composite system iskl — since for each distinct choice of basis (classical) state

∣

∣i
〉

of the first
system and basis state

∣

∣ j
〉

of the second system, we have a distinguishable state of the composite system.
Thus the Hilbert space associated with the composite systemis C kl.

The tensor product is a general construction that shows how to go from two vector spacesV andW of di-
mensionk andl to a vector spaceV ⊗W (pronounced “V tensorW ”) of dimensionkl. Fix bases|v1〉, . . . , |vk〉
and|w1〉, . . . , |wl〉 for V,W respectively. Then a basis forV ⊗W is given by

{|vi〉⊗ |w j〉 : 1≤ i ≤ k,1≤ j ≤ l},
so that dim(V ⊗W) = kl. So a typical element ofV ⊗W will be of the form∑i j αi j(|vi〉⊗ |w j〉). We can
define an inner product onV ⊗W by

(|v1〉⊗ |w1〉, |v2〉⊗ |w2〉) = (|v1〉, |v2〉) · (|w1〉, |w2〉),
which extends uniquely to the whole spaceV ⊗W .

For example, considerV = C 2⊗C 2. V is a Hilbert space of dimension 4, soV ∼= C 4. So we can write|00〉
alternatively as|0〉⊗ |0〉. More generally, forn qubits we haveC 2⊗·· · (n times)⊗·· ·C 2 ∼= C 2n

. A typical
element of this space is of the form

∑
x∈{0,1}n

αx|x〉.

A word of caution: Not all elements ofV ⊗W can be written as|v〉 ⊗ |w〉 for |v〉 ∈ V , |w〉 ∈ W . As an
example, consider the Bell state|φ+〉 = 1√

2
(|00〉+ |11〉).

C/CS/Phys C191, Fall 2005, Lecture 3 5



5.1 The Significance of Tensor Products
Classically, if we put together a subsystem that storesk bits of information with one that storesl bits of
information, the total capacity of the composite system isk + l bits.

From this viewpoint, the situation with quantum systems is extremely paradoxical. We needk complex
numbers to describe the state of a k-level quantum system. Now consider a system that consists of a k-level
subsystem and an l-level subsystem. To describe the composite system we needkl complex numbers. One
might wonder where nature finds the extra storage space when we put these two subsystems together.

An extreme case of this phenomenon occurs when we consider ann qubit quantum system. The Hilbert
space associated with this system is the n-fold tensor product of C 2 ≡ C 2n

. Thus nature must “remember”
of 2n complex numbers to keep track of the state of ann qubit system. For modest values ofn of a few
hundred, 2n is larger than estimates on the number of elementary particles in the Universe.

This is the fundamental property of quantum systems that is used in quantum information processing.

Finally, note that when we actually a measure ann-qubit quantum state, we see only ann-bit string - so we
can recover from the system onlyn, rather than 2n, bits of information.
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