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1 More on Measurements

Recall that the state of a single qubit can be written as arpapiion over the possibilities 0 and []L,U>
or\o> +B|l> Measuring in the standard basis, then, there is probahilif that we get 0 and the new state
is |¢/) =0), and probabilityi 3|2 that we get 1 andiy’) = |1).

A measurement can be written as a projector. A projeRter |i) (i| takes a kefy) and replaces it by its
componen( > with amphtude( | \Lp> The spectral resolution of the identity defines a set ofgmtoys. For

a general expansm\mp =€ |J> and an orthonormal bas{$ }, we have the corresponding resolution
of the identity:

E.g.,1 =0) (0] + [1) (1] for a two state basis.

Hence
Rlw) = i) ZC i1i)]1) A ) =

Note: operators may generally be written in the fdbm= {<a\ b>}{a,b}-

More generally, we can measure the qubit in any orthonormsistsimply by projectin¢w> onto the two
basis vectors. See Figure 1.
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The new state of the systeh]l’> is the outcome of the measurement. Alternatively, instdadeasuring
the system in a rotated basis, we rotate the system (in thesdpmirection) and measure it in the original,
standard basis.
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2 One—qu]oit Unitaries / Gates

Rotations over a complex vector space are called unitansfibamations. For example, rotation Byis
unitary. Reflection about the lin@/2 is also unitary. Unitary operations satisfy

uut=ulu=1

i.e.,UT=U"1, the adjoint of the operator is equal to its inverse. (Retball in the matrix representation we

have[U™];; = U = [UT])

One very important unitary is the time evolution operator

U = exp(—iHt)

whereH is the Hamiltonian operator of the quantum system. In coewpstience we usually analyze
guantum operations in terms of unitaries, or “gates”. Togutally realize these gates we need to implement
the corresponding Hamiltonian operatbts

In order to manipulate a qubit, we must manipulate its state:
¢ >=al0>+B]1>

This is done by acting ofyy > with unitary operators (i.e. gates) such that
Uy >=a’|0>+p/|1>

whereU is a 2x 2 unitary matrix.
Hadamard gate:

The Hadamard gate is a reflection about the Bne 77/8. This reflection maps theaxis to the 45 line,
and they-axis to the—45° line. That is

0) = 3510) + 511 = [+) @
1) = Hl0) - FH1) =[-) - @
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In matrix form, we write
1 /1 1
H=-—"—2
vV2\1 -1

Notice that, starting ify) either|0) or |1), H|y) when measured is equally likely to give 0 and 1. There
is no longer any distinguishing information in the bit. Tlm$ormation has moved to the phase (in the
computational basis).

In a quantum circuit diagram, we imagine the qubit travelfirom left to right along the wire. The following
diagram shows the application of a Hadamard gate.
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3 Two qubits

Now let us examine the case of two qubits. Consider the twairelles in two hydrogen atoms:
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Since each electron can be in either of the ground or excitdd, slassically the two electrons are in one of
four states — 00, 01, 10, or 11 — and represent 2 bits of chlgsimrmation. Quantum mechanically, they
are in a superposition of those four states:

| W) = 0| 00) + 0194 0L) + @139 10) +ay4[11)

wherey ;;|a;; 2= 1. Again, this is just Dirac notation for the unit vectordf:

wherea;; €%, 5 |a;; > = 1.
M easurement:

If the two electrons (qubits) are in staﬁ¢> and we measure them, then the probability that the first qubit
is in statei, and the second qubit is in stajtés P(i, j) = |a;;| 2. Following the measurement, the state of the
two qubits is|y’) = |ij). What happens if we measure just the first qubit? What is thlatility that the
first qubit is 0? In that case, the outcome is the same as if @erfgasured both qubits: Ptst bit = 0} =

0ol 2+ |ap;| % The new state of the two qubit system now consists of thasestén the superposition that
are consistent with the outcome of the measurement — butataed to be a unit vector:

o) = 0|00) + a5y |01)

[
\/ \%o’zﬂ%l\z
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A more formal way of describing this partial measurementhest the state vector is projected onto the
subspace spanned m0> and \01> with probability equal to the square of the norm of the privget or
onto the orthogonal subspace spanneqllﬁy and \11> with the remaining probability. In each case, the
new state is given by the (normalized) projection onto tlspeetive subspace.

Tensor products (informal):

Suppose the first qubit is in the stdig ) = a,|0) +B,|1) and the second qubit is in the stgtg) =
a,|0) + B,|1). How do we describe the joint state of the two qubits?

o) = lo)ole)
a,0,(00) +a1B,|01) + B, a1,[10) + B, B,|11) .

We have simply multiplied together the amplitudes|@f, and|0), to determine the amplitude ¢®0),,,
and so on. The two qubits are not entangled with each othemaadurements of the two qubits will be
distrbuted independently.

Given a general state of two qubits can we say what the staaobf of the individual qubits is? The answer
is usually no. For a random state of two qubits is entangled earinot be decomposed into state of each
of two qubits. In the next lecture we will study the Bell sigterhich are maximally entangled states of two
qubits.

4 Hilbert Spaces

Consider a discrete quantum system thatledistinguishable states (e.g. a system that can be in oke of
distinct energy states. The state of such a system is a wdnie ak dimensional complex vector spatc#.
Thek distinguishable states form an orthogonal basis for théovespace - say denoted Y1) ,...,|k).
Here we are using the standard inner-product @eto define orthogonality. Recall that the inner-product

of two vectors\cp> =75; ai|i> and\t,U} =75, Bi\i> is 0B
Dirac's Braket Notation

We have already introduced the ket notation for vectors.

If |v) = 3 ali) and|w) = 3, 3

i), then we have already observed that

B,
ww=(a @ - 5| P
B,

We denote the row vectdr; - -- @) by (v| and the inner produd®, W) by (vjw).
(v| is abra, and|w) is aket, so(v|w) is abraket.

To demonstrate the utility of this notation, le} be a vector of norm 1. Definle = |v)(v|. Then for anyjw)
we haveP|w) = |v)(v|w), soP is the projection operator onta) (see diagram.) Note th& = |v) (v|v)(v| =
P since|v) has norm 1.

More abstractly, the state of a quantum system is a unit vécta Hilbert space. A Hilbert space is a
complex vector space endowed with an inner-product andhwikicomplete under the induced norm. The
vector space axioms give us notions of span and linear imdkgpee of a set of vectors. However, to
endow the vector space with geometry — the notion of anglevdxern two vectors and the norm or length
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of a vector, we must define an inner-product — whose propedie listed below. The third property —
completeness — is trivially satisfied for a finite dimensiosystem, so we will not bother to define it here.

* An inner product on a (complex) vector spadé is a map(-,-) : V xV — ¥ satisfying for each
uv,weV anda,B €%

(i) (V,V) >0, and(V,V) =0 if and only if v = O;
(i) (at+ BY,W) = a(0,W)+ B(V,W);

(iii) (¥, W) = (W, V).
An inner product space is a vector space together with an inner product.
* Vectorsv,w € V areorthogonal if (V,w) = 0.

* A basis for V is a set{v,---,V,} such that eaci¥ € V can be written uniquely in the formi =
a3V + -+ anVh. The basis is said to barthonormal if (V;,V;) = g for eachi, j. (Hered; =1 if
i=jandOifi# j.)

Note that we can associate to each inner product space aicahonarm, defined by|V|| = /(V,V). A
Hilbert spaceis an inner product space which is complete with respecstoatm. IfV is finite-dimensional
(i.e. it has a finite basis), then completeness is autontigtisaisfied. Furthermore, there is only one Hilbert
space of each dimension (up to isomorphism.)

5 Tensor Products

Consider two quantum systems - the first whtbistinguishable (classical) states (associated Hillpats
%), and the second withdistinguishable states (associated Hilbert spglde What is the Hilbert space as-
sociated with the composite system? We can answer thisiguest follows: the number of distinguishable
states of the composite systenkis— since for each distinct choice of basis (classical) Qﬁate)f the first
system and basis stdt¢> of the second system, we have a distinguishable state obtheasite system.
Thus the Hilbert space associated with the composite syistéfH.

The tensor product is a general construction that shows baye from two vector spacés andW of di-
mensiork andl to a vector spacé @W (pronouncedV tensoiW”) of dimensionkl. Fix basesv,), ..., |v,)
and|w,),...,|w,) for V,W respectively. Then a basis fgro W is given by

{v)@lw) 1 1<i<k1<j<I},

so that dinfV @ W) = kl. So a typical element of ® W will be of the formy;; a; (|vi) ® |w;)). We can
define an inner product oh @ W by

(V1) @[Wy), Vo) @ [Wo)) = ([Vy), [Va)) - (IWy), [Wy)),
which extends uniquely to the whole spateW.

For example, considéf = 2 ® 2. V is a Hilbert space of dimension 4, ¥ €. So we can write00)
alternatively as0) ® |0). More generally, fon qubits we havé&s?® --- (ntimes)®--- €2 = ¢?". A typical
element of this space is of the form

; Ox|X).
xe{0,1}"

A word of caution: Not all elements &f ® W can be written a$v) ® |w) for [v) € V, |w) e W. As an
example, consider the Bell stdig™) = %(!0@ +1]11)).
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5.1 The Signiﬁcance of Tensor Products

Classically, if we put together a subsystem that stérb#s of information with one that stordsbits of
information, the total capacity of the composite systet-id bits.

From this viewpoint, the situation with quantum systemsxsemmely paradoxical. We neddcomplex
numbers to describe the state of a k-level quantum systenv.ddosider a system that consists of a k-level
subsystem and an |-level subsystem. To describe the coramysitem we neekl complex numbers. One
might wonder where nature finds the extra storage space whgutihese two subsystems together.

An extreme case of this phenomenon occurs when we considemahbit quantum system. The Hilbert
space associated with this system is the n-fold tensor ptaxfi’? = 42", Thus nature must “remember”
of 2" complex numbers to keep track of the state ofnaqubit system. For modest values obf a few
hundred, 2 is larger than estimates on the number of elementary pestinlthe Universe.

This is the fundamental property of quantum systems thagds in quantum information processing.

Finally, note that when we actually a measurenagubit quantum state, we see only mbit string - so we
can recover from the system omiyrather than 2, bits of information.
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