C/CS/Phys C191  Qubits, Measurements, Notation 9/01/05
Fall 2005 Lecture 2

| Qu]oits

The basic entity of quantum information is a qubit (pronathécue-bit”), or a quantum bit. This corre-
sponds to a 2-state quantum system. The quantum state ofsteenscan be written as the linear superpo-
sition (column) vector(g) € €. The meaning of this linear superposition is that the qubihithe state
(0) with probability amplitudex € ¥ and in the excited state (1) with probability amplitysle %. We can
refer to 0 and 1 as the basis for the quantum state. It is aglthilie qubit “does not make up its mind” as
to which of the 2 basis states it is in.

In Dirac notation, the qubit state may be written as:

@) =al0) +B|1) a,fe? and |af+|BfP=1

The Dirac notation has the advantage that it labels the basi®rs explicitly. This is very convenient
because the notation expresses both that the state of titedsjalvector, and that it is data (O or 1) to be
processed. Thg|0), 1) } basis is called the standard or computational basis.

In general a column vector—called a “ket'— is denoted\t}yand a row vector is —called a “bra™— is
denoted by |.

We now give three examples of physical realizations of qlbitit there are many more.
Energy levels of hydrogen atom

Consider the electron in a hydrogen atom. It can be in itsmgtatate (i.e. as orbital) or in an excited
state. If this were a classical system, we could store a hitfofmation in the state of the electron: ground
=0, excited = 1. So we can also store a qubit of informatiotéduantum state of the electron, i.e., in the
superpositiod Lp> = a|0> +[3\1>. Note that the electron actually has an infinite number ofg@néevels
(indexed by quantum number with E, 0 —1/n?), but that as long as we can isolate two of them, we can
use these two as a qubit.

Photon Polarization

There is a qubit associated with photon - its polarizatioacd&® that a photon moving along the z-axis has
an associated electric field in the x-y plane. The frequelfityeofield is determined by the frequency of the
photon. However, this still leaves the x-y components ofeteetric field unspecified. The 2-dimensional
guantity specifying this field is the polarization of the pbm

See notes on polarization on the web page Science Trek afvuttv.colorado.edu/physics/2000.

Spin

[EnY
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Qubit systems can always be mapped onto an effective spsy&t2m so it is important to understand what
this is and where it comes from.

Elementary particles and composite particles carry ainsitr angular momentum called spin. For our
purposes, the most important particles are electrons atdn®. To each of these is associated an angular
momentum vector that can point ipp> or down| | >. The quantum mechanical spin state of an electron or
proton is thugy >= a| 1> 4| | >. Therefore, spins can be used as qubits \dth=| 1>, |1 >=| |>.

The spin angular momentum is intrinsic and signals the peesef an intrinsic magnetic moment. Uhlen-
beck and Goudsmit introduced the concept of 'spin’ in 1928xplain the behavior of hydrogen atoms in a
magnetic field:
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The extra transitions can be explained if an electron hasteimsic magnetic momenii, since a magnetic
moment in a magnetic field has an energlg = —[i - B. In the context of QM, new energy levels can derive
from [ being oriented parallel or anti-parallel Bo

Where doegl come from?

The simplest explanation is “classical”: classically, agmetic momenfi comes from a loop of current.
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The energyE = —[i - B comes fromi x B force of current in a B-field (Lorentz force). The lowest eper
and thereby the place where "the system wants to go”, ismédaivhen the magnetic moment and B-field
line up.

If an isolated electron has “intrinsicl then the simplest explanation for this is that electron spibout
some axis. This is independent of its orbital motion in ammtst like the Earth’s "spin” about the north
pole is independent of its orbit around the sun.
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Since[l is associated with a “spinning” charge, then we can wiit@ terms of angular momentum. Any-
thing that spins has angular momentum!

The simplest way to see this is classically for a spinninggdaFor an electron the chargés equal to—e.
Angular momentum is given by =7 x g =T x mv. L = mvr for a charge of mass mmoving in a a circle
with velocity = v. The magnetic moment can be obtained as follows:

2

u = (current) (Area) = — - 1r

~ Q0

But the revolution period = 2an Substituting forr andv in terms ofL, we obtain

. q -
H= ?nL
Now comes the tricky parfThe electron is not actually spinning about some axis! It only acts as though it
is. Electrons are point particles which, as far as we knowe m® "size” in the traditional sense. Therefore
ther in the previous discussion of spinning charge is not medming he intrinsic angular momentum of
an electron has nothing to do with "orbital” motion, but itedolead to an intrinsigi. This is a relativistic
effect that can be derived from the Dirac Equation (RelstiwiSchrodinger equation for sp%vparticles),
but it holds for electrons that are not moving fast.

This intrinsic angular momentum is called “spin’S:

. o erv . : = ge
For an electron, classicallyi = — =L, while quantum mechanicallyi = —5-S.

What isg? g is called the g-factor and it is a unitless correction fachoe to QM. For electrong = 2. For
protons,g ~ 5.6. You should also note therfg)"ﬂ ~ 2000, so we conclude tha,oon < Hyectron-

ectron
So, to understand behavior of the electron’s intrinsic netigrmomenttt (which is an observable we can
measure) then we must understand the behavior of its itramgular momentum & This is why spin is
important. Since the electron is sma&lmust be described by QM.

See also notes “electrons in atoms” (look for “spin” segtimmthe web page Science Trek at http://www.colorado.ét

1.1 The Bloch Sphere

A very nice way to think of the quantum states of qubits is Via tBloch Sphere.” This is a convenient
mapping for all possible single-qubit states. See Figureldvin

6 and ¢ are the usual spherical coordinates, withc® < 11,0 < ¢ < 2. Every point on the sphere
represents a possible qubit. All possible qubits (withireerall multiplicative phase factor) can be thought
of as vectors on this unit sphere. A vector on the Bloch Spregeesents this qubit:

6 0. 0O
Y >= cosE]0> +e"”san§\1>

2 Measurement Revisited

This linear superpositiohy) = a|0) + B3|1) is part of the private world of the qubit. For us to know the
state of the qubit, whether this is realized by an electroph@ton, or an electron spin, we must make a
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Figure 1: The Bloch spher¢0> is at the North pole|,1> at the South pole.

measurement. Measurirjgy) in the standard basi§0),|1) } yields |0) with probability a|?, and|1)
with probability |3 2.

One important aspect of the measurement process is thedrg ghe state of the quantum system: the effect
of the measurement is that the new state is exactly the ogtafrthe measurement. l.e., if the outcome
of the measurement |)$)> then following the measurement, the qubit is in Sqﬁ)e This implies that
you cannot collect any additional information about the ﬁdmmesaj by repeating the measurement on the
resuling state. You need to make many identical measursnoerd set (ensemble) of equivalent states.

Repeated measurements on a state may however be useflidoredsons. We shall examine this with anal-
ysis of the measurement process for photon polarizatioe. pofarization of a photon can be measured by
using a polaroid or a calcite crystal. These materials aftkes that select only one component of the elec-
tric field vector. See the section on polarization in Scidnek at http://www.colorado.edu/physics/2000.
A polaroid sheet (suitably oriented) transmits x—polaﬂip@otonq x> and absorbs y-polarized photobs .
Thus a photon that is in a superpositiop) = a|x) + B|y) is transmitted with probabilitya |? if the po-
laroid sheet is oriented to transmitand with probability|3|? is the sheet is oriented to transryitIn the
former case the final state fis) , in the latter case it ify) .

Consider passing a photon in st¢tp:> through 2 polaroid filters, first arfilter, then ay filter. After the
first filter we have{x> with prob. |a|?. After the second filter we have nothing, with prob. 1. Wheae the
photon gone? During passage through the first filter it waeralesl by the first filter with prob|B|?. If it
got through this first filter, it was absorbed by the secondrfiltith prob. 1. Note that the experiment may
also be interpreted as the results of identical experimemtsany identical photons in sta) .

Now consider what happens if we interpose a third polaro@btht a 45 degree angle between the first two.
Now a photon that is transmitted by the first sheet makesautin the next two with probability /4. Why
is this? The polarization of light after the first filter|ixs>. The second filter is oriented at 45 degrees, i.e.,

it will pass photons with polarization orientati®= %(X’Jﬁ). So let's expres$<> in the basis{v> and its
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orthogonal complement-) . This is also known as thet ), | — ) basis.

= (W) +v))

Now the light passing through the first filter is in sta}axé with probability |a|2. The probability this light
passes the second filter is equal to the probability tH@t} aqubit ends up ir( +> when measured in the
| + >, —> basis. Reading off from the above equation, we see that thisapility is 1/2. Those photons
that do pass successfully through the second filter now haesudting polarization%(|0> +1]1)). The
probability of this state now passing the third filter orexhiny is then 1/2. What is the overall probability
of having a photon pass successfully through all 3 sheets§wgn |a|2/4, obtained by multiplying the
three probabilities for successive passage. The final prsitie isy) .

Note that one effect of these measurements is to effectithte the plane of polarization of the pho-
ton - measurements can thus provide a way to make operatiogsitats, although these are not unitary
operations.

3 Notation

The notation(v| (“bra v") denotes a row vector, the conjugate-transposg)obr |v)T. For example{0| =
(10)and(1| = (o1). More generally,

W= ()" =(a5)=a(o+p . (1)
The Dirac notation can be handy. For example, let
V1) =a10) +by[1), |V;) =a,[0) +by[1) . (2)

Then(v,|v,) (shorthand for(v, | |v,)) is a matrix product of the k 2 matrix (v;| and the 2x 1 matrix
|v,), or just a scalar:

<V1|V2>:(51b_1)(§2) =a,a,+bb, . )
(V4| v,) = (V,|v;) is an inner product. Note thgD|0) = (1|1) = 1 and(0|1) = (1|0) = 0. Thus the
above equation could have been expanded,
(vy|vp) = (@(0] +by(1])(,]0) +b,[1)) 3
= 82,(0]0) + &0,(0]1) + b,2,(110) + iy (1] “
=aa,-1+ab,-0+ba,-0+b;b,-1
—a,a,+bib, .
In this notation,a = (0| ¢), B = (1| ). The normalization conditiotar|? + 8|2 =1 is
1=laf*+|p* = aa+Bp
= (W|0)(0[w) + (W[ 1){1]w)
= (@l(j0){0] + [1){1)w)
=(ly) .

The last equality above follows sin¢@) (0| = (§3), |1)(1] = (32), s0[0)(0| + |1)(1] is the 2x 2 identity
matrix. (This trick is important enough to have its own nathe,“resolution of the identity.”)

()
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4 Measurement in an arbitrary basis

We may choose any orthogonal bagig- and measure the qubit in it. To do this, we rewrite our state in
that basis{y) = a’|v) +B’|v*). The outcome is with probability |a’| 2 and|v-) with probability |3’ 2,
If the outcome of the measurement () yields |v), then as before, the qubit is then in sthtp.

We now illustrate this explicitly, using the new notatiorevdloped above. We measqlr,@ =a \0> +[3|1>
inthe|v),|v*) basis, whergv) = a|0) +b|1). What is the probability of measurifg) ?

Our measurement basis vector[¥$ = a|0) + b|1). Let's choose the orthogonal complement|as) =
b|0) — a]1). Check thatv|v') = ab—ba=0.

(W) + v ) )
= (MO} + V) (vH0) + BV (VL + ) (v* 1)
a(vio) + BVIL)V) + (@ (v*10) + B 1))

aa+ Bb)|v) + (ab— Ba)|v*t) .

)

—~~

The probability of measuringy) in a measurement in thev! basis is therefore

|(VIw)? = |aa+ Bl .
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