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| Readings

Quantum Random Walks: Y. Aharonov et al., PRA 48, 1687 (1993); D. Aharonov et al., qu-ph/0012090;
Moore and Russell, qu-ph/0104137; Kempe, qu-ph/0303081 (review)

Nayak and Vishwanath, qu-ph/0010117; Kempe et al. qu-ph/0205083; Shenvietal. PRA 67, 052307 (2003);
Ambainis qu-ph/03110001

Error Correction: Stolze and Suter, Quantum Computing, Ch. 7
Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 10

2 Classical 1-D Random Walk

Each time step, go one step in a random direction.

If you call the distance travelled in time stepy x;, then
[ +1 wp.1/2

T -1 wp.1/2

and the total distance travelledrirsteps isX = x1 + ...+ Xn. Now, E(X) = nE(x;) = 0 so it is expected that
you end up where you started from. Howeweay(X) = n(var(x)) = nE[(x — E(x))?] = nE(x?) = n, and
so inntime steps you have covered a distanc®6§/n). Alternately, it take€O(k?) time to go a distanck.

This 1-D walk is a Binomial random walk and in the limit of largegives a probability density for the net
displacemenk

1 a
Rx(y) = ex <—>
W)= Vo P\~ 2
where in this examplA = 1. This can be rewritten to give the probability that the particle lies in the interval
y — y+dyalong thex axis at timet as

P(y,t) =

)

expl —— |,

47Dt 4Dt

whereD = nA?/2 is the diffusion coefficient for the random walk and- mt defines the number of steps

per unit time,m. This probability distribution spreads out from a delta functiory &t timet = 0, in such

a way that the area under the curve remains constant and equal to one, while the probability of finding the
particle at some distangealong thex-axis increases with time since the standard deviatien/var(y) =

VA%n = /2Dt increases ag/n, or equivalently, as/t.

We can construct a probabilistic computational algorithm for this classical 1-D random walk as follows. We
haveX € Z representing the total distance travelled, and a bar{0,1}. Every step of the walk we update

our position depending on the coin, then flip the coin in preparation for the next step. That is,

WALK : X « X + (—1)P; pick newb randomly; repeat.

[EnY
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2.1 Quantum 1-D Random Walk

Similar to the probabilistic classical random walk, we hXve Z representing the total distance travelled,
but now our coin{b> € €2 is a quantum bit. The coin flip is implemented as some unitary opdgatey
(e.g. the Hadamard transfor). That is,

WALK : |X,b) « |X+(=1)P,b); |b) «— U|b); repeat.

The quantum random walk (QRW) acts on wave states in a Hilbert spéee .#°° where /7S is the
Hilbert space of the position degree of freedom a#t that for the coin degree of freedom. The unitary
evolution operator on states in this tensor product spade=sSC i.e., the composition of a coin operator
and a controlled-shift operator, where

C = 182G
S = %\x+(—1)b,b><x,b].

Here is an example. Sbt=0=L,b=1=R. Then
S=[X—-1,L)(X,L| +|X+1,R)(X,R],

soStransformgX,L) to |[X —1,L) and|X,R) to |X+1,R). Suppose the coin operator is the Hadamard
coinCy = H. ThenC transforms an arbitrary state localized initiallyXat| y) = a|X,L) +b|X,R), to the
state%(ajx, L) +a|X,R) +b|X,L) —b|X,R)). Hence the action of the QRW unitary evolution operator
U = SCon this state is to produce the state

a+b
V2

which has spread out in both directions and has also mixed the components fadciagdR directions.

|X—1,L>+a\_[2b\x+l,R>

Quantum walks have very different properties than classical walks. The coin degree of freedom allows
non-classical correlations between successive positions to be established, which can be manifested as inter-
ferences. Figure 1 shows the probability distribution of the quantum random walk with a Hadamard coin
starting in a coin-symmetric initial staté, L> +1|0, R) after 100 steps. The probability distribution r

afterk time steps is small & = 0 with two peaks centered dick for some constant. This is clearly

very different from the classical binomial (gaussian) distribution which has a maximot=ad. If one

were however to measure the coin degree of freedom after every step, then one regains the classical random
walk. One can understand the quantum behavior in Figure 1 qualitatively as follows. There are naturally
many different ways to come back to 0 afkgime steps, but each of those ways is likely to carry a different
phase, so they interfere destructively. Correspondingly, there are fewer ways to get outside some distance
away from the start, so here constructive interference is more important.

Some important results from QRW are the following (see review in qu-ph/0303081):

1. Quantum walks do not converge to a stationary distribution, unlike classical walks, since they are
unitary and reversible. However one can define a limiting distribution as the average of the probability
distributions over time. (qu-ph/0012090)

2. The mixing time, i.e., the time it takes to approach a limiting distribution, is quadratically faster for
QRW than for classical walks. (qu-ph/0010117)

3. The 1-D quantum walk takeS(k) time to go a distanck, i.e., it propagates quadratically faster than
the classical tim®(k?) (qu-ph/0010117)
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Figure 1:Probability distribution of a 1-D QRW with a Hadamard coin operator after 100 propagation steps,
starting from a coin-symmetric initial state locatedat 0.

4. The quantum walk can show a faster hitting time than the classical walk, i.e., the time taken to reach
a given site. For the 1-D walk this speed-up is also quadratic. For a QRW on a hypercube (an
n-dimensional hypercube is a graph with vertex set labellea-bit strings 0,1 and connections
(edges) existing between vertices that differ in exactly one bit position) the speed-up in hitting time is
exponential. (qu-ph/0104137,qu-ph/0205083)

5. AQRW on a hypercube with a coin oracle operator can generate the Grover quantum search algorithm
(PRA 67, 052307 (2003)).

6. A QRW on a subset of the hypercube can solve for element distinctness of function values on a finite
set in timeO(n%3), compared to the classical tinGn) (and the quantum search based ti@{@>*).
(qu-ph/03110001)

3 Dirac Equation and QRW

First lets recall the basics about the Schrodinger equation. This describes how a quant@@sﬂﬂtﬁves
over time. In natural units wheife= c = 1, Schrodinger’s equation is

dly)
dt

whereH is the Hamiltonian operator. The Hamiltonian is a hermitian operator, and so corresponds to
an observable, namely energy. In the case of a 1-D particle, the|gtate y(x.t) is the amplitude of the
particle at positionx at timet. In this case, the Hamiltonian operatér= 92/9x?, so Schrodinger’s equation
reads

=Hly)

oy _ oy
ot ox2’

so a state with velocity k is given byy(x) = €<, and this is also an eigenstate of the momentum operator

_hd
P=Tax

Schrodinger’s equation describes the non-relativistic behavior of a quantum state. In that situation the energy
of a particle in 1-D is given by the classical expressior- p?/2m, and by the Hamiltonian operatét

above. Relativistically, the energy of a particle is given classicallgby: p?c?+nrc?, so the corresponding
relativistic quantum operator should satigfiy = p2c2 + m?c*. How do we find the square root of this
operator? Dirac showed how to do this by expanding the Hilbert space by tensoring it with an ad@itional
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space (i.e., with a qubit, and actually with the Hilbert space for the particle spin). This leads to the matrix
form we could have

~ [ pc |mé& ] [ pc| o ofr
H_[mc’-l—f)c]_[O—f)c}er('Z[l o}

which satisfies the required condition

p2 _ [ PP et 0
0 | PP +mectl |

Now we can understand the behavior the particle under this Hamiltonian by recognizing the similarity with
a 1-D QRW.

First, consider the solution fan= 0. Here the Hamilto_nian factors into separate blocks with solutions
wr = f(x—ct) andy = f(x+ct) with e.g., f(x+ct) = €%, These are solutions 1%~ = +cl9¥.

The solutionyr moves to the right at the speed of ligh&ind the solutiony; moves to the left with speed

Now for the general case whems~ 0. Looking at the Hamiltonian decomposition above into two terms

- pc| O 0]l

H_{ A _ﬁc]+m8[ . 0]
we see that the second term acts like a coin flip in the additional qubit (spin) space, but with an amplitude
m. On exponentiating this Hamiltonian to get the corresponding unitary evolution operator, we arrive at the
QRW formU = SCwhereC = e #™&X — cosml|+isinml® X whereX is the Pauli X, or bit flip operator on
the coin space. What does this mean? Well, wimea O, &, 2, ... there are no coin flips and the evolution
will reduce to the evolution under the first term, i.e., free motion to left or right with constant spééaen
m=r/2,3r/2,... the coin flips at each step and we have a 1-D QRW. We saw above that in this situation the
particle moves a distanceaway from the origin aften steps. This ensures also that the particle moves with
constant speed, unlike the classical case where the speed would go to réncrasses (speed /n/n).
Whenmis any other intermediate value, the frequency of coin flips lies inbetween these two cases. Explicit
calculation of the actual distance moved afisteps will allow the mass-dependent speed to be evaluated.

4 Quantum Error Correction

See second set of notes "Introduction to Quantum Error Correction”, and associated introductory literature
references listed there.
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