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1 Readings
Quantum Random Walks: Y. Aharonov et al., PRA 48, 1687 (1993); D. Aharonov et al., qu-ph/0012090;
Moore and Russell, qu-ph/0104137; Kempe, qu-ph/0303081 (review)

Nayak and Vishwanath, qu-ph/0010117; Kempe et al. qu-ph/0205083; Shenvi et al. PRA 67, 052307 (2003);
Ambainis qu-ph/03110001

Error Correction: Stolze and Suter, Quantum Computing, Ch. 7

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 10

2 Classical 1-D Random Walk
Each time step, go one step in a random direction.

If you call the distance travelled in time stepi by xi , then

xi =
{

+1 w.p. 1/2
−1 w.p. 1/2

and the total distance travelled inn steps isX = x1+ . . .+xn. Now,E(X) = nE(xi) = 0 so it is expected that
you end up where you started from. However,var(X) = n(var(xi)) = nE[(xi −E(xi))2] = nE(x2

i ) = n, and
so inn time steps you have covered a distance ofO(

√
n). Alternately, it takesO(k2) time to go a distancek.

This 1-D walk is a Binomial random walk and in the limit of largen gives a probability density for the net
displacementX

PX(y) =
1√

2π∆2n
exp

(
− y2

2∆2n

)
where in this example∆ = 1. This can be rewritten to give the probability that the particle lies in the interval
y→ y+dyalong thex axis at timet as

P(y, t) =
1√

4πDt
exp

(
− y2

4Dt

)
,

whereD = n∆2/2 is the diffusion coefficient for the random walk andn = mt defines the number of steps
per unit time,m. This probability distribution spreads out from a delta function iny at timet = 0, in such
a way that the area under the curve remains constant and equal to one, while the probability of finding the
particle at some distancey along thex-axis increases with time since the standard deviationσ =

√
var(y) =√

∆2n =
√

2Dt increases as
√

n, or equivalently, as
√

t.

We can construct a probabilistic computational algorithm for this classical 1-D random walk as follows. We
haveX ∈ Z representing the total distance travelled, and a coinb∈ {0,1}. Every step of the walk we update
our position depending on the coin, then flip the coin in preparation for the next step. That is,
WALK : X← X +(−1)b; pick newb randomly; repeat.

C/CS/Phys 191, Fall 2005, Lecture 23 1



2.1 Quantum 1-D Random Walk
Similar to the probabilistic classical random walk, we haveX ∈ Z representing the total distance travelled,
but now our coin

∣∣b〉
∈ C 2 is a quantum bit. The coin flip is implemented as some unitary operatorU = C0

(e.g. the Hadamard transformH). That is,
WALK :

∣∣X,b
〉
←

∣∣X +(−1)b,b
〉

;
∣∣b〉
←U

∣∣b〉
; repeat.

The quantum random walk (QRW) acts on wave states in a Hilbert spaceH S⊗H c whereH S is the
Hilbert space of the position degree of freedom andH c that for the coin degree of freedom. The unitary
evolution operator on states in this tensor product space isU = SC, i.e., the composition of a coin operator
and a controlled-shift operator, where

C = I ⊗C0

S = ∑
b

∣∣x+(−1)b,b
〉〈

x,b
∣∣ .

Here is an example. Setb = 0≡ L,b = 1≡ R. Then

S=
∣∣X−1,L

〉〈
X,L

∣∣ +
∣∣X +1,R

〉〈
X,R

∣∣ ,
soS transforms

∣∣X,L
〉

to
∣∣X−1,L

〉
and

∣∣X,R
〉

to
∣∣X +1,R

〉
. Suppose the coin operator is the Hadamard

coinC0 = H. ThenC transforms an arbitrary state localized initially atX,
∣∣ψ〉

= a
∣∣X,L

〉
+b

∣∣X,R
〉

, to the
state 1√

2
(a

∣∣X,L
〉

+a
∣∣X,R

〉
+b

∣∣X,L
〉
−b

∣∣X,R
〉
). Hence the action of the QRW unitary evolution operator

U = SCon this state is to produce the state

a+b√
2

∣∣X−1,L
〉

+
a−b√

2

∣∣X +1,R
〉

which has spread out in both directions and has also mixed the components facing inL andRdirections.

Quantum walks have very different properties than classical walks. The coin degree of freedom allows
non-classical correlations between successive positions to be established, which can be manifested as inter-
ferences. Figure 1 shows the probability distribution of the quantum random walk with a Hadamard coin
starting in a coin-symmetric initial state

∣∣0,L
〉

+ i
∣∣0,R

〉
after 100 steps. The probability distribution forX

after k time steps is small atX = 0 with two peaks centered at±ck for some constantc. This is clearly
very different from the classical binomial (gaussian) distribution which has a maximum atX = 0. If one
were however to measure the coin degree of freedom after every step, then one regains the classical random
walk. One can understand the quantum behavior in Figure 1 qualitatively as follows. There are naturally
many different ways to come back to 0 afterk time steps, but each of those ways is likely to carry a different
phase, so they interfere destructively. Correspondingly, there are fewer ways to get outside some distance
away from the start, so here constructive interference is more important.

Some important results from QRW are the following (see review in qu-ph/0303081):

1. Quantum walks do not converge to a stationary distribution, unlike classical walks, since they are
unitary and reversible. However one can define a limiting distribution as the average of the probability
distributions over time. (qu-ph/0012090)

2. The mixing time, i.e., the time it takes to approach a limiting distribution, is quadratically faster for
QRW than for classical walks. (qu-ph/0010117)

3. The 1-D quantum walk takesO(k) time to go a distancek, i.e., it propagates quadratically faster than
the classical timeO(k2) (qu-ph/0010117)
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FIG. 6: The probability distribution obtained from a com-
puter simulation of the Hadamard walk with a symmetric
initial condition [15]. The number of steps in the walk was
taken to be 100. Only the probability at the even points is
plotted, since the odd points have probability zero.

is to use a different (balanced) coin, namely

Y =
1√
2

(

1 i

i 1

)

. (17)

It is not hard to see that this coin treats | ↑〉 and | ↓〉 in
the same way and does not bias the walk, independently
of its initial coin-state.

Figure 6 shows the probability distribution on the po-
sitions of a symmetric quantum walk.

The pattern of the probability distribution is very intri-
cate - a signature of the quantum world. The multitude of
oscillations makes it hard to analyze the moments of this
walk precisely. Using two different approaches - combina-
torial techniques (recursions, path counting - initiated by
Meyer [7]) - and a more physical path-integral approach
(which expresses the walk in the Fourier domain in terms
of integrals that are amenable to asymptotic analysis)
Ambainis et al. [12] give an asymptotic analysis of the
variance of the quantum random walk[56].

As mentioned before the classical symmetric random
walk on the line after T steps has a variance σ2 = T , so
the expected distance from the origin is of order σ =

√
T .

By contrast it can be shown that the quantum random
walk has a variance that scales with σ2 ∼ T 2, which
implies that the expected distance from the origin is of
order σ ∼ T - the quantum walk propagates quadratically
faster!

Furthermore the walk spreads roughly uniformly over
the positions in the interval [− T√

2
, T√

2
] as can be seen

from Fig. 6 and shown analytically [12]. This is again
in stark contrast to the classical case in which the dis-
tribution is peaked around the origin and drops off ex-
ponentially several standard deviations σ away from the
origin.
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FIG. 7: The classical symmetric random walk on the line with
one absorbing boundary placed in the origin. The starting
point of the walk is in position 1.

To uncover more striking differences of the quantum
walk we can place it on a bounded line, either one-sided
or two-sided [12, 16]. In other words we can insert one or
two absorbing boundaries on the line. Formally an ab-
sorbing boundary in position |b〉 corresponds to a partial
measurement of the process at every time step. More pre-
cisely the unitary step U of the walk will be followed by a
measurement Mb on the position space HP described by
the two projections onto |b〉 and B⊥ (the space orthogo-
nal to |b〉):

Mb|ψ〉 =

{

|b〉 pb = |〈b|ψ〉|2
|ψ〉−〈b|ψ〉|b〉√

1−|〈b|ψ〉|2
pB⊥

= 1 − |〈b|ψ〉|2 (18)

where pb is the absorption probability and pB⊥
its com-

plement. For example if the current state of the system
before measurement is given by

|Ψ〉 =
1√
14

(2| ↑〉 ⊗ |0〉 − | ↑〉 ⊗ |1〉 + 3| ↓〉 ⊗ |1〉) (19)

then after the measurement M0 the state will be | ↑〉⊗ |0〉
with probability 2/7 (in which case we say absorption
occurred and stop the walk) or otherwise in the state

1√
10

(−| ↑〉 ⊗ |1〉 + 3| ↓〉 ⊗ |1〉) with probability 5/7.

Now define one step of the random walk with absorbing
boundaries as U (Eq. (15)) followed by Mb (or Mb and
Mb′ in the case of two absorbing boundaries placed in |b〉
and |b′〉). If the measurement result of Mb (resp. Mb′)
gives |b〉 (resp. |b′〉) the walk is stopped, otherwise the
next iteration is applied.

Let us review what is known about a classical random
walk with one absorbing boundary. For concreteness let
us assume that the walk is started in position 1 and that
the boundary is placed in position b = 0, as in Fig. 7.

It is well known that the probability p to ever get ab-
sorbed by the wall in the origin is p = 1. This is very
easy to see via a recursive reasoning on p: starting in 1
the walk hits 0 with probability 1/2, in which case it gets
absorbed. Otherwise (with probability 1/2) its position
is 2. The probability P20 to ever hit 0 from 2 is the prob-
ability p21 to ever hit 1 from 2 times the probability p10

to ever hit 0 from 1. Both p21 and p10 are equal to p
(the walk is homogeneous in space), which leads to the
recursion

p =
1

2
+

1

2
p21p10 =

1

2
(1 + p2) (20)

Figure 1:Probability distribution of a 1-D QRW with a Hadamard coin operator after 100 propagation steps,
starting from a coin-symmetric initial state located atX = 0.

4. The quantum walk can show a faster hitting time than the classical walk, i.e., the time taken to reach
a given site. For the 1-D walk this speed-up is also quadratic. For a QRW on a hypercube (an
n-dimensional hypercube is a graph with vertex set labelled byn-bit strings 0,1n and connections
(edges) existing between vertices that differ in exactly one bit position) the speed-up in hitting time is
exponential. (qu-ph/0104137,qu-ph/0205083)

5. A QRW on a hypercube with a coin oracle operator can generate the Grover quantum search algorithm
(PRA 67, 052307 (2003)).

6. A QRW on a subset of the hypercube can solve for element distinctness of function values on a finite
set in timeO(n2/3), compared to the classical timeΩ(n) (and the quantum search based timeO(n3/4).
(qu-ph/03110001)

3 Dirac Equation and QRW
First lets recall the basics about the Schrodinger equation. This describes how a quantum state

∣∣ψ〉
evolves

over time. In natural units wherēh = c = 1, Schrodinger’s equation is

i
d
∣∣ψ〉
dt

= H
∣∣ψ〉

whereH is the Hamiltonian operator. The Hamiltonian is a hermitian operator, and so corresponds to
an observable, namely energy. In the case of a 1-D particle, the state

∣∣ψ〉
= ψ(x, t) is the amplitude of the

particle at positionx at timet. In this case, the Hamiltonian operatorH = ∂ 2/∂x2, so Schrodinger’s equation
reads

i
∂ψ

∂ t
=

∂ 2ψ

∂x2 ,

so a state with velocity∼ k is given byψ(x) = eikx, and this is also an eigenstate of the momentum operator
p = h̄

i
d
dx.

Schrodinger’s equation describes the non-relativistic behavior of a quantum state. In that situation the energy
of a particle in 1-D is given by the classical expressionE = p2/2m, and by the Hamiltonian operatorH
above. Relativistically, the energy of a particle is given classically byE2 = p2c2+m2c4, so the corresponding
relativistic quantum operator should satisfyĤ2 = p̂2c2 + m2c4Î . How do we find the square root of this
operator? Dirac showed how to do this by expanding the Hilbert space by tensoring it with an additionalC ∈
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space (i.e., with a qubit, and actually with the Hilbert space for the particle spin). This leads to the matrix
form we could have

Ĥ =
[

p̂c mc2Î
mc2Î −p̂c

]
=

[
p̂c 0
0 −p̂c

]
+mc2

[
0̂ Î
Î 0̂

]
which satisfies the required condition

Ĥ2 =
[

p̂2c2 +m2c4Î 0
0 p̂2c2 +m2c4Î

]
.

Now we can understand the behavior the particle under this Hamiltonian by recognizing the similarity with
a 1-D QRW.

First, consider the solution form = 0. Here the Hamiltonian factors into separate blocks with solutions
ψR = f (x− ct) andψL = f (x+ ct) with e.g., f (x± ct) = ei(x−ct). These are solutions toih̄∂ψ

∂ t = ±ch̄
i

dψ

dx .
The solutionψR moves to the right at the speed of lightc and the solutionψL moves to the left with speedc.

Now for the general case whenm 6= 0. Looking at the Hamiltonian decomposition above into two terms

Ĥ =
[

p̂c 0
0 −p̂c

]
+mc2

[
0̂ Î
Î 0̂

]
we see that the second term acts like a coin flip in the additional qubit (spin) space, but with an amplitude
m. On exponentiating this Hamiltonian to get the corresponding unitary evolution operator, we arrive at the
QRW formU = SCwhereC = e−

i
h̄mI⊗X̂ = cosmI+ i sinmI⊗ X̂ whereX̂ is the Pauli X, or bit flip operator on

the coin space. What does this mean? Well, whenm= 0,π,2π, ... there are no coin flips and the evolution
will reduce to the evolution under the first term, i.e., free motion to left or right with constant speedc. When
m= π/2,3π/2, ... the coin flips at each step and we have a 1-D QRW. We saw above that in this situation the
particle moves a distancen away from the origin aftern steps. This ensures also that the particle moves with
constant speed, unlike the classical case where the speed would go to zero asn increases (speed∝

√
n/n).

Whenm is any other intermediate value, the frequency of coin flips lies inbetween these two cases. Explicit
calculation of the actual distance moved aftern steps will allow the mass-dependent speed to be evaluated.

4 Quantum Error Correction
See second set of notes ”Introduction to Quantum Error Correction”, and associated introductory literature
references listed there.
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