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1 Readings
Literature:

Grover’s algorithm and amplitude amplification: quant-ph/9605043

Diffusion transform and other motivations from physics: Grover, quant-ph/0109116

Quantum bomb detection: Elitzur and Vaidman, Vistas in Astronomy 37, 253 (1993); Found. of Physics 23,
987 (1993); Vaidman, Found. of Physics 33, 491 (2003); Kwiatet al. PRL 74, 4763 (1995); Rudolph and
Grover, quant-ph/0206066

2 Amplitude amplification in Grover search
The Diffusion operatorD has two properties:

1. It is unitary and can be efficiently realized.

2. It can be seen as an “inversion about the mean.”

We discussed the first property in the previous lecture. We now analyze the second property.

For N = 2n, we have

D = −I +2
∣

∣ψ0
〉〈

ψ0
∣

∣

where
∣

∣ψ0
〉

is the zero vector in the Hadamard basis. We saw last time thatD can be decomposed as:
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D = HN











+1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1











HN

= HN





















+2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











+ I











HN

= HN











+2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











HN − I

=










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−2/N −2/N · · · −2/N

...
...
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
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
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The indexing here is such that the first state (top left hand corner of the matrices) is the target state
∣

∣a
〉

. Note
that the central matrix inD is a conditional phase shift matrix, i.e., it puts a phase shift in front of all states
except the target.

Consider the action ofD on a vector
∣

∣α
〉

to generate another vector
∣

∣β
〉

:

D
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
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
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













=

















β1
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βN

















Defineµ = ∑i αi/N as the mean amplitude Then

βi =
2
N ∑

j

α j −αi

= 2(µ −αi)

= µ +(µ −αi)

which corresponds to a reflection ofαi about the mean valueµ . This is illustrated in Figure 1 below (note
that if we start from the uniform superposition, the non-target states will have equal amplitude, we have just
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Figure 1: Inversion of amplitudesαi about their mean valueµ .

illustrated the principle for a general state here). Thus, the amplitude ofβi = − 2
N ∑ j α j + αi = −2µ + αi

can be considered an “inversion about the mean” with respectto αi. Now if we first change the sign of
the amplitude of the target state, by applying the oracle as in the previous lecture, the target state is now
significantly further away from the mean. The inversionabout the mean further amplifies this, as shown in
Figure 2 below.

This shows how quantum search algorithm iteratively improves the probability of measuring a solution
by increasing the component of the target state at each iteration. The overall procedure is summarized as
follows

1. Start state is
∣

∣ψ0
〉

= ∑x
1√
N

∣

∣x
〉

2. Invert the phase of
∣

∣a
〉

using f

3. Then invert about the mean usingD

4. Repeat steps 2 and 3O(
√

N) times, so in each iterationαa increases by2√
N

Suppose we just want to finda with probability 1
2. Until this point, the rest of the basis vectors will have

amplitude at least 1√
2N

. In each iteration of the algorithm,αa increases by at least2√
2N

=
√

2
N . Eventually,

αa = 1√
2
. The number of iterations to get to thisαa is ≤

√
N.

2.1 Diffusion transform
See the discussion of motivation and form of matrixD by Grover in his article quant-ph/0109116.

2.2 Applications of quantum search
Grover’s algorithm is often called a “database” search algorithm, where you can query in superposition.
Other things you can do with a similar approach:

1. Find the minimum.

2. Approximately count elements, or generate random ones.
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Figure 2: Application of oracle to invert sign of target state followed by Inversion of amplitudesαi about
their mean valueµ gives rise to amplification of the target component.
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Figure 3: The first three steps of Grover’s algorithm. We start with a uniform superposition of all basis
vectors in the top panel. In the middle panel we have used the function f to invert the phase ofαk. After
running the diffusion operatorD in the bottom panel, we have amplifiedαk while decreasing all other
amplitudes.
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3. Speed up the collision problem.

4. Speed up the test for matrix multiplication. In this problem we are given three matrices,A, B, andC,
and are told that the product of the first two equals the third.We wish to verify that this is indeed true.
An efficient (randomized) way of doing this is picking a random arrayr, and checking to see whether
Cr = ABr = A(Br). Classically, we can do the check inO(n2) time, but using a similar approach to
Grover’s algorithm we can speed it up toO(n1.75) time.

5. Speedup exhaustive search in NP-complete problems, although this alone is not enough to provide
efficient solution. See Ambainis, quant-ph/0504012 for a review of applications to NP-complete
problems.

3 Quantum bomb detection
To illustrate some of the concepts behind Grover’s algorithm, we can consider a problem known as Vaid-
man’s bomb. In this problem, we have a package that may or may not contain a bomb. However, the bomb
is so sensitive that simply looking to see if the bomb exists will cause it to explode. So, can we determine
whether the package contains a bomb without setting it off? Paradoxically, quantum mechanics says that we
can. This is achieved by combining a technique referred to inthe physics literature as ’interaction free mea-
surement’, which relies on interferometry, with amplitudeamplfication. By making an iterative amplitude
amplification, we can arrive at a sequence ofN cycles of single qubit operations such that if the package
contains a bomb, we will look (i.e., interact with it and blowup) with probability only 1/N, while the rest of
the time we have two distinct outcomes for the qubit state which tell us whether or not the bomb is present.

3.1 The Quantum Zeno Effect
We will make use of a phenomenon known as the Quantum Zeno Effect (also referred to as the “watched
pot” or the “watchdog” effect, or the “hare and tortoise syndrome”). Consider a quantum state consisting
of a single qubit. This qubit starts at

∣

∣0
〉

, and at every step we will rotate it toward
∣

∣1
〉

by θ = π/2N.
After one rotation, we have

∣

∣φ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

, where whereβ = sinθ ≈ 1/N. After 2 steps, we have
∣

∣φ
〉

= cos(2θ)
∣

∣0
〉

+ sin(2θ)
∣

∣1
〉

, ...etc. so that afterN steps we have
∣

∣φ
〉

= cos(Nθ)
∣

∣0
〉

+ sin(Nθ)
∣

∣1
〉

.
Now sinceβ = sinθ ≈ 1/N, then this final state afterN steps will be

∣

∣1
〉

, or very close to this, so that any
measurement will then return

∣

∣1
〉

with high probability.

Now what if we decide to measure the state after each rotation? After the first rotation, we will measure
∣

∣0
〉

with high probability,but this measurement collapses the state back to
∣

∣0
〉

. Thus, each measurement has
a high probability of yielding

∣

∣0
〉

; the probability of getting
∣

∣1
〉

by the end is approximatelyN 1
N2 = 1

N , as
opposed to the extremely high probability in the previous case.

Essentially, the Quantum Zeno Effect says that if we have a quantum state that is in transition toward a
different state, making frequent measurements can delay that transition by repeatedly collapsing the qubit
back to its original state.

This is another kind of amplitude amplification - in Grover’salgorithm our amplification was unitary, but
this is not.

3.2 Looking for the Bomb
To determine whether Vaidman’s bomb exists without actually looking at it, we want to take advantage of
the Quantum Zeno Effect. Figure 4 shows a scheme for the interaction free detection with photonic qubits,
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Figure 4: Interaction free detection of a single bomb.

labelled by their polarization states
∣

∣0
〉

≡
∣

∣H
〉

and
∣

∣1
〉

≡
∣

∣V
〉

(taken from Rudolph and Grover, quant-
ph/00206066). Let us follow the action of this circuit. The initial input is

∣

∣0
〉

, which is then rotated by the
lens (denotedθ ) to the state cosθ

∣

∣0
〉

+ sinθ
∣

∣1
〉

, with θ = π/2N andN large so that sinθ ∼ π/2N. This
state is then input into a beam splitter (for spin qubits, a Stern-Gerlach magnet would be used) which sends
∣

∣0
〉

along the lower path and
∣

∣1
〉

along the upper path. These two paths are completely independent and
can go, for instance, through different rooms in a building.Our protocol will be set up to establish whether
there is or is not a bomb in the upper path - so one will always use the apparatus in a configuration that the
upper path traverses the suspect region and the lower path goes through a known safe (no bomb) region.

First, suppose that there is no bomb present. Then the secondbeamsplitter combines the amplitudes from
the two paths coherently and the final state is cosθ

∣

∣0
〉

+ sinθ
∣

∣1
〉

. If we send this back to the lens and
rotate byθ again, then input into the beam splitter, ... etc. we get the final state cos2θ

∣

∣0
〉

+sin2θ
∣

∣1
〉

. So
repeating the cycleN times will give the final state

∣

∣1
〉

as described above. So if there is no bomb and we
cycleN times before measuring the qubit, we will find

∣

∣1
〉

to certainty or a very high probability.

Now, suppose that there is a bomb present on the upper path. Then in the first cycle there are two possible
outcomes. With probability sin2 θ the qubit passes the bomb and causes an explosion. With probability
cos2 θ the qubit goes through the lower path, does not see the bomb, and emerges as

∣

∣0
〉

. Thus the presence
of the bomb is like a quantum tortoise, which forces a quantumZeno effect - but note that in this inter-
ferometric situation the bomb does not need to actually be measured... hence the name ‘interaction free
measurement’. Now the probability that the qubit emerges unscathed as

∣

∣0
〉

from the second cycle is then
cos2 θ cos2θ , while the probability that the bomb explodes on the second cycle if cos2θsin2θ . You can thus
see how to continue this to get the distribution of probabilities for all possible results afterN cycles: the
probability for no explosion in any cycle is cos2N θ and the qubit emerges as

∣

∣0
〉

, and the probability for
having the bomb explode in any one cycle between 1 andN is 1− cos2N θ . In the latter case there is no
qubit....

So we have three possible outcomes after makingN cycles with our single qubit starting as
∣

∣0
〉

:

1. no bomb: final state is
∣

∣1
〉

with (near) certainty
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2. bomb present: no explosion, final state is
∣

∣0
〉

with probability cos2N θ

3. bomb present: explosion happened, no final state..., probability 1−cos2N θ

What are these probabilities? Forθ = π/2N and N large, we have cos2N θ ∼ 1− π2/4N ∼ 1 and 1−
cos2N θ ∼ π2/4N. So we have very effectively reduced the probability of exploding the bomb to∼ 1/N by
this combination of quantum Zeno and cycling with a qubit interferometer.

The approach can also be modified to the particularly unfortunate case where we haveN packages,N −1 of
which contain bombs. We want to find the one package that does not contain a bomb, though we don’t mind
setting off a few of the bombs in the process. This can be done by a modification of the above interferometric
scheme, as described in quant-ph/0206066. Note that here the amplitude amplification occurs by the implicit
(deferred) measurement in the interferometer. In contrast, in Grover’s algorithm the amplitude of one target
basis vector is amplified while all others are constantly diminished or reset in a unitary manner.

One important thing that theN bomb example illustrates about quantum search is that it’s highly counter-
intuitive to be able to search in

√
N steps. By querying in superposition, we manage to search using fewer

steps than there are locations to search!
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