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| Readings

Literature:

Grover’s algorithm and amplitude amplification: quant9&95043

Diffusion transform and other motivations from physicso@sr, quant-ph/0109116

Quantum bomb detection: Elitzur and Vaidman, Vistas in ésdmy 37, 253 (1993); Found. of Physics 23,

987 (1993); Vaidman, Found. of Physics 33, 491 (2003); Kwtal. PRL 74, 4763 (1995); Rudolph and
Grover, quant-ph/0206066
2 Amplitude ampliﬁcation in Grover search
The Diffusion operatob has two properties:
1. Itis unitary and can be efficiently realized.

2. It can be seen as an “inversion about the mean.”

We discussed the first property in the previous lecture. Weamtalyze the second property.
ForN = 2", we have

D = —1+2[yo) (Yol

where\t,l;o} is the zero vector in the Hadamard basis. We saw last timéticah be decomposed as:

=
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The indexing here is such that the first state (top left hamdesmf the matrices) is the target st@é. Note
that the central matrix i is a conditional phase shift matrix, i.e., it puts a phasé shiront of all states
except the target.

Consider the action db on a vectofja) to generate another vects):

ap B
D a i = BI
an B.N

Defineu = 5 a; /N as the mean amplitude Then

B = ézaj—ai
2(4 — o)
= MU+ (U—ao)

which corresponds to a reflection af about the mean value. This is illustrated in Figure 1 below (note
that if we start from the uniform superposition, the nomgédrstates will have equal amplitude, we have just

C/CS/Phys 191, Fall 2005, Lecture 22 2



> |

By

> |

Figure 1: Inversion of amplitudes; about their mean valug.

illustrated the principle for a general state here). This,amplitude of3, = —% Yjaj+ai=—2U+0a
can be considered an “inversion about the mean” with redpegt. Now if we first change the sign of
the amplitude of the target state, by applying the oraclendké previous lecture, the target state is now
significantly further away from the mean. The inversiondlibe mean further amplifies this, as shown in
Figure 2 below.

This shows how quantum search algorithm iteratively impeothe probability of measuring a solution
by increasing the component of the target state at eachidterarhe overall procedure is summarized as
follows

1. Start state isgo) = Tx 7 |X)
2. Invert the phase qa> using f
3. Then invert about the mean usibg

4. Repeat steps 2 and+/N) times, so in each iteratioam, increases by%N

Suppose we just want to firmwith probability % Until this point, the rest of the basis vectors will have

amplitude at Ieast\/—m. In each iteration of the algorithna, increases by at Iea% = \/; . Eventually,

gy = \% The number of iterations to get to thig is < v/N.

2.1 Diffusion transform

See the discussion of motivation and form of maBiky Grover in his article quant-ph/0109116.

2.2 Applications of quantum search

Grover’s algorithm is often called a “database” search ritlym, where you can query in superposition.
Other things you can do with a similar approach:

1. Find the minimum.

2. Approximately count elements, or generate random ones.
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Figure 2: Application of oracle to invert sign of target stédllowed by Inversion of amplitudes; about
their mean valugu gives rise to amplification of the target component.
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Figure 3: The first three steps of Grover’s algorithm. Wetstath a uniform superposition of all basis
vectors in the top panel. In the middle panel we have useduihietion f to invert the phase aftx. After
running the diffusion operatod in the bottom panel, we have amplifieq. while decreasing all other
amplitudes.
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3. Speed up the collision problem.

4. Speed up the test for matrix multiplication. In this perhlwe are given three matrices, B, andC,
and are told that the product of the first two equals the thie.wish to verify that this is indeed true.
An efficient (randomized) way of doing this is picking a randarrayr, and checking to see whether
Cr = ABr = A(Br). Classically, we can do the check@(n?) time, but using a similar approach to
Grover’s algorithm we can speed it up@gn'"°) time.

5. Speedup exhaustive search in NP-complete problemsualththis alone is not enough to provide
efficient solution. See Ambainis, quant-ph/0504012 for\dexg of applications to NP-complete
problems.

3 Quantum bomb detection

To illustrate some of the concepts behind Grover’s algorjtive can consider a problem known as Vaid-
man’s bomb. In this problem, we have a package that may or miagamtain a bomb. However, the bomb
is so sensitive that simply looking to see if the bomb existscause it to explode. So, can we determine
whether the package contains a bomb without setting it adifadxically, quantum mechanics says that we
can. This is achieved by combining a technique referred toerphysics literature as ’interaction free mea-
surement’, which relies on interferometry, with amplituai@plfication. By making an iterative amplitude
amplification, we can arrive at a sequenca\otycles of single qubit operations such that if the package
contains a bomb, we will look (i.e., interact with it and bloyw) with probability only ¥N, while the rest of
the time we have two distinct outcomes for the qubit statectvkell us whether or not the bomb is present.

3.1 The Quantum Leno Effect

We will make use of a phenomenon known as the Quantum ZenactEétso referred to as the “watched
pot” or the “watchdog” effect, or the “hare and tortoise syorde”). Consider a quantum state consisting
of a single qubit. This qubit starts m> and at every step we will rotate it towatﬁi} by 6 = mr/2N.
After one rotation, we havép) = a|0) + B|1), where where = sin@ ~ 1/N. After 2 steps, we have
|@) =cog26)|0) +sin(26)|1), ...etc. so that afteN steps we havep) = cogN6)|0) + sin(N6)|1).
Now sincefd = sinf ~ 1/N, then this final state afté steps will be| l> , or very close to this, so that any
measurement will then retuﬂ|1> with high probability.

Now what if we decide to measure the state after each rofa#dter the first rotation, we will measur8)
with high probability, but this measurement collapses the state back to |O> Thus, each measurement has
a high probability of yielding{O}; the probability of gettinq 1> by the end is approximatelrydé = % as
opposed to the extremely high probability in the previouseca

Essentially, the Quantum Zeno Effect says that if we haveamigun state that is in transition toward a
different state, making frequent measurements can deédytrémsition by repeatedly collapsing the qubit
back to its original state.

This is another kind of amplitude amplification - in Grovealgorithm our amplification was unitary, but
this is not.

3.2 Looking for the Bomb

To determine whether Vaidman’s bomb exists without acyualbking at it, we want to take advantage of
the Quantum Zeno Effect. Figure 4 shows a scheme for theattten free detection with photonic qubits,
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Figure 4: Interaction free detection of a single bomb.

labelled by their polarization stat¢6) = |H) and|1) = |V) (taken from Rudolph and Grover, quant-
ph/00206066). Let us follow the action of this circuit. Timdial input is|0> , Which is then rotated by the
lens (denoted) to the state co@\O} +sin9|1>, with 8 = 11/2N andN large so that sif ~ 17/2N. This
state is then input into a beam splitter (for spin qubits,arsGerlach magnet would be used) which sends
|O> along the lower path anm along the upper path. These two paths are completely indepémand
can go, for instance, through different rooms in a buildi@gr protocol will be set up to establish whether
there is or is not a bomb in the upper path - so one will alwagstiis apparatus in a configuration that the
upper path traverses the suspect region and the lower pathtigiough a known safe (no bomb) region.

First, suppose that there is no bomb present. Then the séaamsplitter combines the amplitudes from
the two paths coherently and the final state is@@ +sin6\1>. If we send this back to the lens and
rotate by6 again, then input into the beam splitter, ... etc. we get thal fitate cos@|0) +sin20|1). So
repeating the cyclél times will give the final stat¢1> as described above. So if there is no bomb and we
cycleN times before measuring the qubit, we will fil\m} to certainty or a very high probability.

Now, suppose that there is a bomb present on the upper pa¢i ifiithe first cycle there are two possible
outcomes. With probability sfrf the qubit passes the bomb and causes an explosion. Withhiliyba
cog 6 the qubit goes through the lower path, does not see the bardkeraerges a@ . Thus the presence
of the bomb is like a quantum tortoise, which forces a quanfigno effect - but note that in this inter-
ferometric situation the bomb does not need to actually basored... hence the name ‘interaction free
measurement’. Now the probability that the qubit emergexathed a$0> from the second cycle is then
cog 6cog 6, while the probability that the bomb explodes on the secyutedf cos 8sin?6. You can thus
see how to continue this to get the distribution of probtiesi for all possible results aftét cycles: the
probability for no explosion in any cycle is ¢®S9 and the qubit emerges dﬂ> and the probability for
having the bomb explode in any one cycle between 1Mnsl 1—cosN 6. In the latter case there is no
qubit....

So we have three possible outcomes after makimaycles with our single qubit starting @> :

1. no bomb: final state ¢§L> with (near) certainty
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2. bomb present: no explosion, final statéds with probability cos™ 6

3. bomb present: explosion happened, no final state...apility 1 — cos™ 6

What are these probabilities? F8r= 11/2N and N large, we have ¢80 ~ 1 — /4N ~ 1 and 1
cos™N 8 ~ 12 /4N. So we have very effectively reduced the probability of exiiig the bomb te- 1/N by
this combination of quantum Zeno and cycling with a qubieifgrometer.

The approach can also be modified to the particularly unfiaites case where we haepackagesN — 1 of
which contain bombs. We want to find the one package that duteontain a bomb, though we don’t mind
setting off a few of the bombs in the process. This can be dgrmenbodification of the above interferometric
scheme, as described in quant-ph/0206066. Note that heeaarthlitude amplification occurs by the implicit
(deferred) measurement in the interferometer. In contimsirover’s algorithm the amplitude of one target
basis vector is amplified while all others are constantlyidismed or reset in a unitary manner.

One important thing that thd bomb example illustrates about quantum search is thatiglshhcounter-

intuitive to be able to search /N steps. By querying in superposition, we manage to searciy tiswer
steps than there are locations to search!
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