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1 Readings
Benenti et al., Ch. 3.10

Stolze and Suter, Quantum Computing, Ch. 8.4

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 6

Literature: Grover, quant-ph/9605043, quant-ph/9706033

2 Introduction
The problem is to search for an item in an unstructured database. For example, suppose you are given a
telephone number in LA and need to find out who it belongs to. You will have to go through all the phone
numbers and check the names of the registered owners in each case...

Searching an item in an unsorted database with sizeN costs a classical computerO(N) running time, since
on averageN/2 entries need to be checked. Can a quantum computer search for a needle in a haystack
much more efficiently than its classical counterpart? Grover, in 1996, affirmatively answered this question
by proposing a search algorithm that consults the database only O(

√
N) times. In contrast to algorithms

based on the quantum Fourier transform, with exponential speedups, the search algorithm only provides a
quadratic improvement. However, the algorithm is quite important because it has broad applications, and
because the same technique can in principle be used to improve solutions of NP-complete problems.

One might think of having better improvements over the search algorithm. However, it turns out that
Grover’s search algorithm is optimal. At leastΩ(

√
N) queries are needed to solve the problem.

Grover’s algorithm uses parallelism and amplitude amplification. We will discuss the amplitude amplifica-
tion aspect in detail in the next lecture. In the current lecture we will present a geometrical analysis of the
quantum search algorithm.

2.1 The quantum oracle
Here’s the search problem: You are given a boolean functionf : {1, . . . ,N}→ {0,1}, and are promised that
for exactly onea ∈ {1, . . . ,N}, f (a) = 1. Think of this as a table of sizeN, where exactly one element has
value 1, and all the others are 0.f is effectively an oracle that can check/recognize the solution when this is
given it as input. Sof acts like a detector of the target solution. In the current analysis we shall assume that
there is only 1 solution, but the arguments can be generalized to a finite number of solutions.

We construct a two register state, with the database register first and the oracle register second. Then our
oracle acts as follows (cf. the Deutsch-Jozsa algorithm)

O
∣

∣x
〉 ∣

∣q
〉

=
∣

∣x
〉 ∣

∣q⊕ f (x)
〉

,

where we assumef can be computed classically in polynomial time. Then we can also apply the oracle with
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1. the database register in superposition:

∑
x

αx

∣

∣x
〉 ∣

∣0
〉

→ ∑
x

αx

∣

∣x
〉 ∣

∣ f (x)
〉

and

2. with the oracle register in superposition:

∑
x

αx
∣

∣x
〉

(
∣

∣0
〉

−
∣

∣1
〉

√
2

)

7→ ∑
x

αx

(
∣

∣x
〉 ∣

∣ f (x)
〉

−
∣

∣x
〉 ∣

∣ f (x)
〉

√
2

)

= ∑
x

αx
∣

∣x
〉

(
∣

∣ f (x)
〉

−
∣

∣ f (x)
〉

√
2

)

= ∑
x

αx

∣

∣x
〉

(−1) f (x)

(
∣

∣0
〉

−
∣

∣1
〉

√
2

)

Here f (x) means the binary complement off (x), i.e., if f (x) = 1, then f (x) = 0. Note that we have used the
same phase kick-back as in Deutsch-Jozsa to go from lines 2 to3. (Check: if f (x) = 0 the oracle qubit is
∣

∣0
〉

−
∣

∣1
〉

= (−1) f (0)
(∣

∣0
〉

−
∣

∣1
〉)

, while if f (x) = 1 the oracle qubit is
∣

∣1
〉

−
∣

∣0
〉

= (−1) f (1)
(∣

∣0
〉

−
∣

∣1
〉)

.)

So the oracle marks the solutions to the search problem by a minus sign (no measurement).

2.2 Geometric analysis of search
Grover’s algorithm findsa in O(

√
N) steps. Consider the two dimensional subspace that consistsof two

states:
∣

∣a
〉

and the uniform superposition
∣

∣ψ0
〉

= ∑x
1√
N

∣

∣x
〉

. Let θ be the angle between
∣

∣ψ0
〉

and
∣

∣e
〉

,

where
∣

∣e
〉

is the vector that is orthogonal to
∣

∣a
〉

(in the direction of
∣

∣ψ0
〉

) in this subspace. See Figure 1.
∣

∣a
〉

is the target and we can regard
∣

∣ψ0
〉

as the least biased initial state. So we want to increaseθ to go from
∣

∣ψ0
〉

to
∣

∣a
〉

. How do we accomplish this?

One way to rotate a vector is to make two reflections. In particular, we can rotate a vector
∣

∣v
〉

by 2θ to
the new vector

∣

∣v1
〉

by first reflecting about
∣

∣e
〉

and then reflecting about
∣

∣ψ0
〉

. This transformation is
also illustrated in Figure 1. The first reflection transformsan arbitrary vector

∣

∣v
〉

to
∣

∣v2
〉

and the second
reflection transforms

∣

∣v2
〉

to
∣

∣v1
〉

.

Each step of our algorithm is thus a rotation by 2θ (we discuss the implementation of the two rotations
involved in a step below). This means that we needπ/2

2θ iterations for the algorithm to complete. Now, what
is θ?

〈ψ0|a〉 = cos(π/2−θ) = sin(θ)

but

〈ψ0|a〉 =
1√
N

∑
x

〈

x
∣

∣a
〉

=
1√
N

δxa =
1√
N

Then since sinθ ≈ θ , we know thatθ ≈ 1√
N

. Thus, we needO(
√

N) iterations for the algorithm to complete.

In the end, we get very close to
∣

∣a
〉

, and then with high probability, a measurement of the state yieldsa.
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Figure 1: To rotate
∣

∣v
〉

by 2θ to
∣

∣v1
〉

, we reflect around
∣

∣e
〉

, reaching
∣

∣v2
〉

, and then reflect around
∣

∣ψ0
〉

.

Note that one must not iterate beyond this point. Subsequentiterations will rotate the vector
∣

∣v
〉

away from
∣

∣a
〉

again. For large N, we need to iterater = π
√

N/4 times and the corresponding probability of error is
O(1−cos2 θ) = O(sin2θ) = O(N−1).

How do we implement the two reflections?

1. Reflection about
∣

∣e
〉

is easy.
∣

∣e
〉

is the vector orthogonal to
∣

∣a
〉

so all we need to do is flip the phase
of the component of the database wavefunction in the direction of

∣

∣a
〉

, i.e., we send any component
∣

∣a
〉

to−
∣

∣a
〉

and leave all other components as is. To accomplish this, we just act with the oracle:

O
∣

∣v
〉

= ∑
x

(−1) f (x)αx

∣

∣x
〉

= ∑
x6=a

αx

∣

∣x
〉

−αa

∣

∣a
〉

= ∑
x

αx
∣

∣x
〉

−2αa
∣

∣a
〉

⇒ Ôa = Î −2
∣

∣a
〉〈

a
∣

∣= R∣
∣a
〉

2. What about the reflection about
∣

∣ψ0
〉

? This is just the zero vector in the Hadamard basis, so we can
simply transform to this basis and them reflect So we first apply H2n , which maps

∣

∣ψ0
〉

7→
∣

∣00. . .0
〉

,
then reflect around

∣

∣00. . .0
〉

, and finally, applyH2n to return to the original basis. The reflection about
the zero vector can easily be seen to be given by

−O0 = −I +2
∣

∣0
〉〈

0
∣

∣

by analogy with the above analysis of reflection about
∣

∣e
〉

. The overall reflection about
∣

∣ψ0
〉

is then
given by the product of the three transformations: (shown for N = 2n here)
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−D = HN











−1 0 · · · 0
0 1 · · · 0
...

...
. ..

...
0 0 · · · 1











HN

= HN





















−2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











+ I











HN

= HN











−2 0 · · · 0
0 0 · · · 0
...

...
. ..

...
0 0 · · · 0











HN + I

=











−2/N −2/N · · · −2/N
−2/N −2/N · · · −2/N

...
...

.. .
...

−2/N −2/N · · · −2/N











+ I

=











−2/N +1 −2/N · · · −2/N
−2/N −2/N +1 · · · −2/N

...
...

. . .
...

−2/N −2/N · · · −2/N +1











You can check this using the expressions we derived for the Hadamard gate in previous lectures and
homeworks. Note that for largeN, the matrixD (this is referred to as the diffusion transform and
will be discussed in detail in the next lecture), has diagonal elements approx equal to -1 (−1+ 2/N)
and very small, positive and constant off-diagonal elements (2/N). So in each step the amplitude of
every basis state contributes by a small amount to all other basis states. This is a generalization of the
phenomenon of diffusion on a lattice.

The next effect ofD can also be written as

D = −
(

I−2
∣

∣ψ0
〉〈

ψ0
∣

∣

)

= −R∣
∣ψ0

〉

which is now very similar to the form of the first reflection, but with a minus sign.

To make one iteration step we combine the two reflections, yielding the Grover operator

G = DOa = −R∣
∣ψ0

〉R∣
∣a
〉 .

We apply this Grover operatorO(
√

N) times to rotate from
∣

∣ψ0
〉

(close to
∣

∣e
〉

) to
∣

∣a
〉

.

What about efficiency of implementation? Observe thatD is expressed as the product of three unitary
matrices (two Hadamard matrices separated by a conditionalphase shift matrix). Therefore,D is also
unitary. Regarding the implementation, both the Hadamard and the conditional phase shift transforms can
be efficiently realized withinO(n) gates.
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