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1 Readings
Benenti et al., Ch. 3.12 - 3.13

Stolze and Suter, Quantum Computing, Ch. 8.4.5

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 5.2

Literature: Abrams and Lloyd, Phys. Rev. Lett.83, 5162 (1999); Aspuru-Guzik et al., Science309, 1704
(2005).

2 Quantum phase estimation
This is a good example of the use of the quantum fourier transform. Suppose we have a unitary operator
U with an eigenvector

∣

∣u
〉

and corresponding eigenvalueeiφ , where 0≤ φ < 2π. We want to find the
eigenvalue, which means finding phaseφ , and we want to find this to a given level of precision. In particular,
we want to find the bestn-bit estimate ofφ .

We can do this with a quantum circuit using i) H gate, ii) controlled unitaries of the form c-U2
j
, and iii) an

inverse QFT. We need two registers as input. The first register containsn qubits and will contain then-bit
estimate ofφ on output. The second register describes the state

∣

∣u
〉

and so must contain somem qubits,
but this value is irrelevant for our purposes as long as it is large enough to giveφ to at least the required
accuracy.

Figure 1 below shows steps i) and ii) of the quantum circuit. Step i) consists of making the uniform super-
position state. Step ii) is the sequential action of the controlled unitary gates c-U2

j
on the second register,

with each of the qubits in the first register acting as controlqubit in turn. The action of any one of these
gates on a state1√
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where we have used the 2j th repeated action of c-U.

Applying these gates withj increasing from 0 (with qubit 1 of register 1 as control) ton = 1 (with qubit n
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Figure 1: Quantum circuit for first part of phase estimation algorithm (steps i) and ii)). Following this circuit
by an inverse QFT circuit will produce the bestn−bit estimate of the phaseφ .

of register 1 as control) as shown in Figure 1 yields the state
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.

So now we see that the phase factorseiφy are propagated back from the second, eigenstate register, to the
first, control register. This is another example of phase kick-back.

Writing

φ = 2π
( a

2n + δ
)

wherea = an−1an−2 . . .a0, and 0≤ |δ | ≤ 1/2n+1, defines 2πa/2n as the bestn-bit binary approximation of
φ . (Alternatively one could work with

φ = 2πφ̃
φ̃ = 0.φn−1φn−2 . . .φ0

where the binary fractioñφ provides ann-bit representation of the phase mod 2π.)

Making this substitution forφ in terms ofa and then applying the inverse Fourier transformF−1 of the state
∣

∣y
〉

,

F−1
∣

∣y
〉

=
1
2n

2n−1

∑
x=0

e−2πixy/2n ∣
∣x

〉
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to the sum over states reached after steps i) and ii) yields

1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e−2πi(a−x)y/2n
e2πiδy

∣
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〉
∣
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.

Note that we have applied the inverse QFT only to the control register. In fact everything from now on is
happening only to the control register. We are keeping the eigenstate register in the equations for correctness,
to remind you that it is there and should not be ’cancelled’ out!

Now we perform a measurement of the qubits in the first register, in the computational basis. There are two
possible types of outcomes:

1. If δ = 0, then the wave function of the first register reduces to the single termx = a. This can be seen,
e.g., as in previous lectures, by noting that whenx = a the phase term is unity for ally and hence the
sum overy gives 1

2n ∑y 1
∣

∣a
〉

=
∣

∣a
〉

, i.e., the termx = a exhausts the unitarity of the sum. So all other
terms must cancel by destructive interference. In this case, measuring the first register gives alln bits
of a with certainty and the phaseφ is exactly determined.

2. If δ 6= 0, the result of measuring the first register is the bestn-bit estimate ofφ and is obtained with
probability pa = |ca|2, where

ca =
1
2n

2n−1

∑
y=0

(

e2πiδ
)y

.

This is a geometric series, which can be summed and bounded bymeans of some trigonometric
manipulations (Benenti, p. 157), to show that

|ca|2 ≥
4

π2 ≃ 0.405.

So the bestn-bit estimate of the phaseφ is obtained with a high probability.

Clearly increasing the number of qubitsn will improve the accuracy of the phase estimation. What is not so
obvious but is also true, is that increasingn will also increase the probability of success (Cleve et al.,Proc.
Roy. Soc. Lond. A 454, p.339 (1998).)

3 Finding eigenvalues
The phase estimation method may be immediately applied to the problem of finding eigenvalues of a quan-
tum Hamiltonian. We know that

U
∣

∣ψ
〉

= ∑
j

e−iω jt
∣

∣φ j
〉

or in position representation,

ψ(x, t) = ∑
j

a je
−iω jtφ j(x)
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is a superposition of eigenstatesφ j of H(x) and equivalently, also ofU(t) = e−iHt/h̄, whereω j = E jh̄ and
E j is the eigenvalue ofH(x) corresponding toφ j. The eigenvalues ofU aree−iω jt , so we may work with the
phase estimation algorithm and a eigenstate register containing φ j to determine the eigenvaluesE j.

Assume that we can efficiently generate some guess for an eigenstate

∣

∣ψ0
〉

=
2i−1

∑
i

ψ0(k)
∣

∣k
〉

.

The basisk could be a position dependent basis. Now all we need is some efficient way to realize the time
evolution operator, i.e., gatesU(t). This can be done in a variety of ways provided that the timet is short,
i.e., we really haveU(t2 − t2) = U(∆t). This guess for the eigenstate is stored in the second register (m
qubits). The first, control register withn qubits is prepared in the uniform superposition state∑y

∣

∣y
〉

/
√

2n,
according to step i) of the quantum circuit above. Acting on the second register then withU(∆t), we can
construct the controlled unitaries c-U2y

whereU2y ≡U(2y∆t). After step ii) we then have the state

Ψ =
1√
2n

2n−1

∑
y=0

∣

∣y
〉

U y
∣

∣ψ0
〉

=
1√
2n

2n−1

∑
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∣

∣y
〉

2n−1

∑
j

a je
−iω jyt

∣

∣ψ j
〉

where we have used the eigenstate expansion ofU
∣

∣ψ0
〉

. The inverse Fourier transform of this state contains
a number of frequenciesω j. Thus ifψ0 is a good approximation to an eigenstate, there will be primarily one
such frequencyω0 and to a high probability this will result, giving the energyE j. If there are many terms
in the expansion ofψ0, then the algorithm has to be repeated many times in order to build up the frequency
spectrum ofω j. As long as the desired energies are still obtained after a polynomial number of repeats, the
algorithm is still exponentially more efficient than the classical analog.

Applications of this to quantum chemical calculations of electronic energies of atoms and molecules are
described in the two literature papers referenced in Section 1. The second paper (Aspuru-Guzik et al.)
describes a recursive modification to the quantum phase estimation that allows the energy to be put into the
first register 4 qubits at a time, thereby reducing the size ofthis from about 20 to 4 qubits for calculation of
ground state energies of a small molecule.

C/CS/Phys 191, Fall 2005, Lecture 20 4


	Readings
	Quantum phase estimation
	Finding eigenvalues

