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| Readings

Benenti et al., Ch. 3.12 - 3.13
Stolze and Suter, Quantum Computing, Ch. 8.4.5
Nielsen and Chuang, Quantum Computation and Quantum latowm Ch. 5.2

Literature: Abrams and Lloyd, Phys. Rev. Le83, 5162 (1999); Aspuru-Guzik et al., Scien8@9, 1704
(2005).

2 Quantum phase estimation

This is a good example of the use of the quantum fourier toasf Suppose we have a unitary operator
U with an eigenvectoﬂu> and corresponding eigenval@?®, where 0< ¢ < 2. We want to find the
eigenvalue, which means finding phageand we want to find this to a given level of precision. In qmar,

we want to find the best-bit estimate ofp.

We can do this with a quantum circuit using i) H gate, ii) coligd unitaries of the form c-8, and iii) an
inverse QFT. We need two registers as input. The first ragistetainsn qubits and will contain the-bit
estimate ofp on output. The second register describes the $u§teand SO must contain sonm qubits,
but this value is irrelevant for our purposes as long as ialigd enough to give to at least the required
accuracy.

Figure 1 below shows steps i) and ii) of the quantum circuiépS) consists of making the uniform super-
position state. Step ii) is the sequential action of the e unitary gates c-& on the second register,
with each of the qubits in the first register acting as conguddit in turn. The action of any one of these
gates on a stat% (|0) + 1)) |u) is
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where we have used thé th repeated action of c-U.

Applying these gates witlp increasing from O (with qubit 1 of register 1 as controlyite- 1 (with qubitn
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Figure 1. Quantum circuit for first part of phase estimatitgoathm (steps i) and ii)). Following this circuit
by an inverse QFT circuit will produce the bastbit estimate of the phasg.

of register 1 as control) as shown in Figure 1 yields the state
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So now we see that the phase factéf¥ are propagated back from the second, eigenstate registie t
first, control register. This is another example of phask-kiack.

Writing

o = 2n<2%+5>

wherea = an_18n_»...a0, and 0< |§| < 1/2™1, defines 2ra/2" as the best-bit binary approximation of
@. (Alternatively one could work with

o = 2mp

¢ = Oh1tho. @

where the binary fractiop provides am-bit representation of the phase mard. 2

Making this substitution forp in terms ofa and then applying the inverse Fourier transfdfm' of the state
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to the sum over states reached after steps i) and ii) yields
1 212"
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Note that we have applied the inverse QFT only to the congwister. In fact everything from now on is
happening only to the control register. We are keeping thersitate register in the equations for correctness,
to remind you that it is there and should not be 'cancelled! ou

Now we perform a measurement of the qubits in the first registéhe computational basis. There are two
possible types of outcomes:

1. If 6 =0, then the wave function of the first register reduces toitiglestermx = a. This can be seen,
e.g., as in previous lectures, by noting that wikena the phase term is unity for aland hence the
sum ovely gives x yy1|a) = |a), i.e., the termx = a exhausts the unitarity of the sum. So all other
terms must cancel by destructive interference. In this,casasuring the first register gives albits
of awith certainty and the phasgis exactly determined.

2. If  # 0, the result of measuring the first register is the Ipdsit estimate ofp and is obtained with
probability py = |ca|?, where

« = za )

This is a geometric series, which can be summed and boundedelys of some trigonometric
manipulations (Benenti, p. 157), to show that

4
2 ~
|Cal” > ol 0.405
So the beshb-bit estimate of the phasgis obtained with a high probability.
Clearly increasing the number of qubitsvill improve the accuracy of the phase estimation. What issoo

obvious but is also true, is that increasimgyill also increase the probability of success (Cleve etRxioc.
Roy. Soc. Lond. A 454, p.339 (1998).)

3 Finding eigenvalues

The phase estimation method may be immediately appliedetpribblem of finding eigenvalues of a quan-
tum Hamiltonian. We know that

Uly) =3 e"“'g)
]
or in position representation,
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is a superposition of eigenstatgsof H(x) and equivalently, also df (t) :_e*”“/ﬁ, wherew; = E;jh and
E; is the eigenvalue dfl (x) corresponding ta;. The eigenvalues d&f aree™'“i*, so we may work with the
phase estimation algorithm and a eigenstate registerioorgap; to determine the eigenvalu&s.

Assume that we can efficiently generate some guess for anstide

2-1
W) = Y wo(k)|k).

The basisk could be a position dependent basis. Now all we need is sdiceert way to realize the time
evolution operator, i.e., gatés(t). This can be done in a variety of ways provided that the tinseshort,
i.e., we really haveJ (t; —to) = U(At). This guess for the eigenstate is stored in the second eegist
qubits). The first, control register withqubits is prepared in the uniform superposition s@@& /2N,
according to step i) of the quantum circuit above. Acting lo& $econd register then with(At), we can
construct the controlled unitaried.t? whereU? = U (2YAt). After step ii) we then have the state
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where we have used the eigenstate expansilbh{ %> . The inverse Fourier transform of this state contains
a number of frequencies;. Thus if ), is a good approximation to an eigenstate, there will be pilgnane
such frequencyw and to a high probability this will result, giving the enery. If there are many terms
in the expansion ofp, then the algorithm has to be repeated many times in ordarilid tp the frequency
spectrum ofwj. As long as the desired energies are still obtained aftetympmial number of repeats, the
algorithm is still exponentially more efficient than thesdacal analog.

Applications of this to quantum chemical calculations afodtonic energies of atoms and molecules are
described in the two literature papers referenced in Sedtio The second paper (Aspuru-Guzik et al.)
describes a recursive modification to the quantum phaseatstin that allows the energy to be put into the
first register 4 qubits at a time, thereby reducing the siz@isffrom about 20 to 4 qubits for calculation of
ground state energies of a small molecule.
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