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1 Course Philosophy/Outline
Over the last decade the there have been foundational progress at the interface of quantum physics and com-
puter science. The remarkable power of computing devices based on quantum mechanics is the subject of
the emerging area of quantum computation (which incidentally provides an alternative to the exponential
Moore’s law dash towards fundamental limits in classical computation). This course provides an introduc-
tion to this area, the basic ideas of quantum mechanics, the formal model of quantum computers, basic
quantum algorithms and more concrete proposals for experimental realization of quantum computers.

Qubits are the building blocks of quantum computation, quantum information and cryptography. They also
provide a particularly simple setting in which to introducethe basic concepts of quantum mechanics such
as the superposition principle, tensor products, measurements, and the enigmatic Bell’s inequalities and
Heisenberg uncertainty principle. The first part of this course provides a simple introduction to quantum
mechanics for non-physics majors, while providing physicsmajors an opportunity to deepen their under-
standing of this important topic.

The course will then focus on the enormous computational power latent in quantum mechanics, and how
it can be used to design quantum computers and quantum algorithms. We will also discuss schemes for
quantum error-correction and for implementing unconditionally secure cryptography based on the principles
of quantum mechanics.

Finally, we will turn our attention to physical realization: we will discuss in detail the spin properties of
elementary particles - the vehicle of choice for carrying a qubit. The course will conclude with a survey of
schemes for implementing quantum computers in the laboratory.

There are four main properties of quantum systems that are useful in quantum computation, cryptography
and Information:

• Interference

• Superposition

• Entanglement

• Measurement

In particular, the detailed study of entanglement is the most important point of departure from more tradi-
tional approaches to the subject. For example, quantum computation derives its power from the fact that the
description of the state of an n-particle quantum system grows exponentially in n. This enormous informa-
tion capacity is not easy to access, since any measurement ofthe system only yields n pieces of classical
information. Thus the main challenge in the field of quantum algorithms is to manipulate the exponential
amount of information in the quantum state of the system, andthen extract some crucial pieces via a final
measurement.
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Quantum cryptography relies on a fundamental property of quantum measurements: that they inevitably
disturb the state of the measured system. Thus if Alice and Bob wish to communicate secretly, they can
detect the presence of an eavesdropper Eve by using cleverlychosen quantum states and testing them to
check whether they were disturbed during transmission.

1.1 Young’s double-slit experiment
Recall Young’s double-slit experiment from high school physics, which was used to demonstrate the wave
nature of light. The apparatus consists of a source of light,a screen with two very thin identical slits, and a
screen to view the (interference) pattern created by transmitted light (see picture on next page). If only one
slit is open then intensity of light on the viewing screen is maximum on the straight line path and falls off
in either direction. However, if both slits are open, then the intensity oscillates according to the interference
pattern predicted by wave theory.

In the quantum version of this experiment, the light source is replaced by a source of single photons. Instead
of the intensity of light falling on a pointx on the viewing screen, we can only speak about the probability
that a detector at pointx detects the photon. If only a single slit is open, then plotting this probability of
detection as a function ofx gives the same curve as the intensity as a function ofx in the classical Young
experiment. What happens when both slits are open? Could theprobabability plot duplicate the interference
pattern? Classical intuition strongly suggests that this is impossible. After all, for the photon to be detected
atx, either it went through slit 1 and ended up atx or it went through slit 2 and ended up atx. The probability
that it is detected atx is just the sum of the probabilities of these two events. However there are pointsx
where the detection probability is large if only one slit is open although it is zero or small in the interference
pattern. If the photon actually goes through slit 1, why should it matter whether slit 2 is open or shut. How
could the probability that the photon goes through slit 1 andends up atx be affected by whether or not slit
2 is open.

Nonetheless, the probability of detection when both slits are open does duplicate the interference pattern.
How does quantum mechanics explain this? Quantum mechanicsexplains this as follows (although this
might not be very satisfactory as an explanation, it does provide a good formal was of thinking about the
phenomenon):

Quantum mechanics introduces the notion of the complex amplitudeψ1(x) ∈ C with which the photon goes
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through slit 1 and hits pointx on the viewing screen. The probability that the photon is actually detected
at x is the square of the magnitude of this complex number:P1(x) = |ψ1(x)|2. Similarly, let ψ2(x) be the
amplitude if only slit 2 is open.P2(x) = |ψ2(x)|2.

Now when both slits are open, the amplitude with which the photon hits pointx on the screen is just the
sum of the amplitudes over the two ways of getting there:ψ12(x) = 1√

2
ψ1(x) + 1√

2
ψ2(x). As before the

probability that the photon is detected atx is the squared magnitude of this amplitude:P12(x) = |ψ1(x)+
ψ2(x)|2. The two complex numbersψ1(x) and ψ2(x) can cancel each other out to produce destructive
interference, or reinforce each other to produce constructive interference or anything in between.

But in this quantum mechanical explanation, how does a particle that went through the first slit know that the
other slit is open? In quantum mechanics, this question is not well-posed. Particles do not have trajectories,
but rather take all paths simultaneously. This is a key to thepower of quantum computation.

1.2 Basic Quantum Mechanics
The basic formalism of quantum mechanics is very simple, though understanding and interpreting the re-
sults is much more challenging. There are three basic principles, enshrined in the three basic postulates of
quantum mechanics:

• The superposition principle: this axiom tells us what the state of a quantum system looks like.

• The measurement principle: this axiom governs how much information about the state we can access.

• Unitary evolution: this axoim governs how the state of the quantum system evolves in time.

1.3 The superposition principle
Consider a system withk distinguishable states. For example, the electron in an atom might be either in its
ground state or one ofk−1 excited states, each of progressively higher energy. As a classical system, we
might use the state of this system to store a number between 0 and k−1. The superposition principle says
that if a quantum system is allowed to be any one of number of different states then it can also be placed in a
linear superposition of these states with complex coefficients. Thus the quantum state of thek-state system
above is described by a sequence ofk complex numbersα0, . . . ,αk−1 ∈ C . α j is said to be the (complex)
amplitude with which the system is in statej. We will require that the amplitudes are normalized so that
∑ j |α j|2 = 1. It is natural to write the state of the system as ak dimensional vector:













α0
α1
.

.

αk−1













The normalization on the complex amplitudes means that the state of the system is a unit vector in ak
dimensional complex vector space — called a Hilbert space.

In quantum mechanics it is customary to use the Dirac’s ket notation to write vectors. As we shall see later,
this is a particularly useful notation in the context of quantum computation. In the ket notation, the above
state is written as:

∣

∣ψ
〉

=
k−1

∑
j=0

∣

∣ j
〉
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Here
∣

∣0
〉

= (10...0)T and
∣

∣k− 1
〉

= (0...01)T . The Dirac notation has the advantage that the it labels the
basis vectors explicitly. This is very convenient because the notation expresses both that the state of the
qubit is a vector, and that it is data (0 or 1) to be processed. The{

∣

∣0
〉

,

∣

∣1
〉

, . . . ,

∣

∣k−1
〉

} basis is called the
standard or computational basis.

1.4 Measurement Principle
This linear superposition

∣

∣ψ
〉

= ∑k−1
j=0

∣

∣ j
〉

is part of the private world of the electron. For us to know the

electron’s state, we must make a measurement. Measuring
∣

∣ψ
〉

in the standard basis yieldsj with probability

|α j|2.

One important aspect of the measurement process is that it alters the state of the quantum system: the effect
of the measurement is that the new state is exactly the outcome of the measurement. I.e., if the outcome of
the measurement isj, then following the measurement, the qubit is in state

∣

∣ j
〉

. This implies that you cannot
collect any additional information about the amplitudesα j by repeating the measurement.

More generally, a measurement is associated with any orthonormal basis of thek-dimensional Hilbert space
(complex vector space). The measurement can be conceptually thought of as follows: suppose the basis
vectors of this orthonormal basis are labelled from 0 tok−1. The outcome of the measurement isj with
probability equal to the square of the length of the projection of the state vectorψ onto the j − th basis
vector. Moreover, if the outcome isj, then the new state is thej− th basis vector. Thus measurement may
be regarded as a probabilistic rule for projecting the statevector onto one of the vectors of the orthonormal
measurement basis.

1.5 Qubits
The basic entity of quantum information is a qubit (pronounced “cue-bit”), or a quantum bit. This corre-
sponds to a 2-state quantum system, and its state can be written as a unit (column) vector

(α
β
)

∈ C 2. In
Dirac notation, this may be written as:

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

α ,β ∈C and |α |2 + |β |2 = 1
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