
C/CS/Phys 191 Shor’s order (period) finding algorithm and factoring 11/01/05
Fall 2005 Lecture 19

1 Readings
Benenti et al., Ch. 3.12 - 3.14

Stolze and Suter, Quantum Computing, Ch. 8.3

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 5.2 - 5.3, 5.4.1 (NC use phase
estimation for this, which we present in the next lecture)

literature: Ekert and Jozsa, Rev. Mod. Phys.68, 733 (1996)

2 Introduction
With a fast algorithm for the Quantum Fourier Transform in hand, it is clear that many useful applications
should be possible. Fourier transforms are typically used to extract the periodic components in functions,
so this is an immediate one. One very important example is finding the period of a modular exponential
function, which is also known as order-finding. This is a key element of Shor’s algorithm to factor large
integersN. In Shor’s algorithm, the quantum algorithm for order-finding is combined with a series of
efficient classical computational steps to make an algorithm that is overall polynomial in the input size
n = log2N, scaling asO(n2lognloglogn). This is better than the best known classical algorithm, thenumber
field sieve, which scales superpolynomially inn, i.e., asexp(O(n1/3(logn)2/3)). In this lecture we shall first
present the quantum algorithm for order-finding and then summarize how this is used together with tools
from number theory to efficiently factor large numbers.

3 Shor’s order-finding algorithm
3.1 modular exponentiation
Recall the exponential functionax. The modular exponential function is obtained by taking this function and
calculating the remainder on division byN, i.e.,FN(x) = axmod N. The order of the modular exponential,
referred to as the order ofa mod N or ord(a), is the smallest positive integerr such that

armod N = 1

Equivalently, we can say thatr is the period of this function, since from the above equationwe have

ar = k ·N +1

ar+1 = k ·N ·a+ a

ar+1mod N = a mod N,

wherek is some integer. SoFN(x+ r) = F(Nx), i.e.,r is the period ofFN(x). Note thatr ≤ N.

Three cases arise:

C/CS/Phys 191, Fall 2005, Lecture 19 1

1. r is odd

2. r is even andar/2mod N = −1

3. r is even andar/2mod N 6= −1.

Cases 1) and 2) are not relevant to factorization ofN, but in case 3) at least one of the two numbers
gcd(N,ar/2±1) is a non-trivial factor ofN wheregcd(x,y) is the greatest common denominator ofx andy
(see Section 4 below).

How do we find ord(a) = r? The strategy is to calculation the functionFN(x) for many values ofx in parallel
and to use Fourier techniques to detect the period in the sequence of function values. In the next subsection
we show Shor’s quantum algorithm does this efficiently usingthe quantum fourier transform.

3.2 Period finding
The algorithm uses two registers:

• register 1 (source) hasK qubits and stores a numberQ = 2K , with N2 ≤ Q ≤ 2N2, or equivalently a
number modQ

• register 2 (target) has at leastn = log2N qubits, so can storeN or more basis states, or equivalently, a
number modN.

Note that the total number of qubits required is then given bythe sum ofK ≤ 1+2log2N andn ≤ log2N.

The algorithm can be decomposed into 6 steps.

1. Both registers are initialized in the state|0〉⊗ |0〉.

2. The source register is transformed to an equal superposition over allQ basis states. This can be done
either by applying theK qubit Hadamard transform (see homework 3)

H⊗K
∣

∣x
〉

=
1√
2K ∑

y
(−1)xy

∣

∣y
〉

⇒ H⊗K
∣

∣0
〉

=
1√
2K ∑

y

∣

∣y
〉

or by applying the Fourier Transform

∣

∣q
〉

7→ 1√
Q

Q−1

∑
q′=0

exp

(

2πi
qq′

Q

)

∣

∣q′
〉

⇒
∣

∣0
〉

7→ 1√
Q

Q−1

∑
q′=0

∣

∣q′
〉

.

in both cases (what does this tell you about the relation of Hadamard to Fourier transform?) we get
the full quantum state (of source and register)

1√
Q

Q−1

∑
q=0

|q〉⊗ |0〉

C/CS/Phys 191, Fall 2005, Lecture 19 2

3. Now we apply a gateUa that implements the modular exponentiationq 7→ f (q) = aqmod N. This is a
function that is easy to compute classically (it can be computed in logq multiplications using repeated
squaring,a2 = a× a, a4 = a2 × a2, a8 = a4× a4, ... see Nielsen and Chuang, p. 228 for a detailed
analysis). As described above,f (q) hasr as its smallest period. Note thatf is distinct on[0,r −1]
(i.e., all values are different) since otherwise it would have a smaller period.

Applying the functionf to the contents of source register 1 and storing the result intarget register 2,
i.e., we get

1√
Q

Q−1

∑
q=0

∣

∣q
〉
∣

∣aqmod N
〉

.

HereQ > N2 values of the functionf (q) are computed in parallel. Sincer < N, the periodr must
manifest itself in the resulting sequence of function values now stored in the second register. So there
can only ber different function values.

4. Now we measure the second register. When we measure, we must get some value which has to be
one of ther distinct values off (q). Suppose it isf (q0). Then all superposed states of the first register
inconsistent with this measured value must disappear. For simplicity, we shall restrict ourselves first
to the case whereQ = mr, i.e., there arem different values ofq which have the same value off (q).

Then exactlyQ/r states of register 1 will contribute to the measured state ofregister 2, and after this
measurement the combined state of the two registers must be given by

1
√

Q/r

Q/r−1

∑
j=0

| jr + q0〉| f (q0)〉

5. We now have a periodic superposition of state in register 1, with periodr. From now on the second
register is irrelevant and we can drop it from discussion. The first register has a periodic superposition
whose period is the value that we wanted to compute in the firstplace. How do we get that period ?

Can we get anything simply by measuring the first register ?No, since all we will get is a random
point, with no correlation across independent trials (becauseq0 is random). Instead, we first make a
quantum Fourier transform on register 1.

Applying the Fourier transform moduloQ to state

∣

∣φq0

〉

=
1

√

Q
r

Q
r −1

∑
j=0

| jr + q0〉

gives us

1√
r

r−1

∑
k=0

ωkq0|k Q
r
〉

whereω is a primitiverth root of unity,

ω = e
2πi

r .

C/CS/Phys 191, Fall 2005, Lecture 19 3

You may be wondering how the sum got changed fromQ/r terms to justr terms. This was the result
of destructive interference in the QFT of the state

∣

∣φq0

〉

=
∣

∣ jr + q0
〉

. Here’s how it happened. First
rewrite

∣

∣φq0

〉

as a sum over allQ states:

∣

∣φq0

〉

=
Q−1

∑
a=0

g(a)
∣

∣a
〉

whereg(a) =
√

r/Q if a− q0 is a multiple ofr andg(a) = 0 otherwise. Then Fourier transforming
this moduloQ (this just means the Fourier transform baseK or with Q = 2K basis states), gives

∑
c

√
r

Q

Q−1

∑
j=0

exp

(

2πi(jr + q0)c
Q

)

∣

∣c
〉

= ∑
c

√
r

Q

[

Q−1

∑
j=0

exp

(

2πi(jr)c
Q

)

]

exp

(

2πiq0c
Q

)

∣

∣c
〉

.

Now looking at the right hand side, you can see that whenrc/Q is an integer, i.e.,c is a multiple of
Q/r, each term in the sum inside the square brackets will be equalto one. The square bracket term is
then equal toQ and we obtainexp(2πiq0c/Q)/

√
r for the coefficient of basis state

∣

∣c
〉

. On the other
hand, whenrc/Q is not an integer, the sum in the square brackets cancels to zero (see Benenti p. 163
for an example). So the only states in the sum overc that survive are those for whichc is a multiple of
Q/r. Thus the Fourier transformed state has periodQ/r, and furthermore it has non-zero values only
at values ofc that are multiples of this period. Writingc = kQ/r, we get then the QFT state

FTQ
∣

∣φq0

〉

=
1√
r

r−1

∑
k=0

exp

(

2πiq0k
r

)

∣

∣k
Q
r

〉

which is what was given above. Note that the Fourier transform has moved the shift valueq0 in the
index of the original state to a phase factor in the fourier transformed state.

6. Now we measure register 1. The measurement gives us a valueC = k Q
r , wherek is a random number

between 0 and r-1. Now we haveQ, C, and hence also the ratioC/Q = k/r. Now if gcd(k,r) = 1,
i.e., if k andr have no common divisors, we can reduce the ratioC/Q to an irreducible fraction, e.g.,
1/r. See Benenti p. 163 for an example. Sincek is chosen at random in the measurement, then
the probability thatgcd(k,r) = 1 is greater than 1/logr for larger values ofr (see Appendix A.3 in
Ekert and Jozsa, RMP 68, 733 (1996)). So one can repeat the is easy to see that with big probability
gcd(k, Q

r) = 1.

Then by repeating the calculationO(logr) < O(logN) times, one can amplify the success probability
to as close to one as desired. So we have an efficient determination of the orderr.

In the general case, whenQ 6= nr, one has a slightly modified analysis that results in the order being deter-
mined to a high probability. Note, in class we looked also at the slightly different procedure followed in
Suter’s book, where at step 4 one makes a Fourier Transform onregister 1 and then measures this. See Suter
Ch. 8.3.3.

C/CS/Phys 191, Fall 2005, Lecture 19 4

4 Using order-finding to factor large numbers N efficiently
Once we have the orderr of axmod N, we first check ifr is even andar/2mod N 6=−1 (case 3) above). If so,
then lets proceed withy = ar/2. Sincey2mod N = 1, theny2−1= (y+1)(y−1) is divisible byN. SoN has
a common factor with eithery + 1 or y−1. The common factor must be one of greatest common divisors
gcd(N,y±1). These can be efficiently computed with Euclid’s algorithm (classical - what else!).

4.1 Euclid’s algorithm for gcd(x,y)

Let x,y be 2 integers,x > y and z = gcd(z,y). Then bothx andy and the numbersx− y, x− 2y, ... are
multiples ofz. Therefore the remainderr = x− ky < y is also a multiple ofz. Now if r = 0, thenz = y and
the problem is solved. So we only have to figure out how to get tozero remainder from the starting integers
x andy. This is easy. We simply repeatedly take the remainder:

z = gcd(x,y) = gcd(y,r1) = gcd(r1,r2) = gcd(r2,r3) = ... = gcd(rn,rn),

wherer1,r2, ... are the successive remainders,ri = ri−1− kiy. The last non-zero remainderrn is z.

4.2 Shor’s factoring algorithm
The overall quantum factoring algorithm is as follows:

1. If N even, return the factor 2

2. Determine whetherN = ab for integersa ≥ 1 andb ≥ 2: if yes, return the factora

3. Randomly choosey between 1 andN −1. If z = gcd(y,N) > 1, return the factorz.

4. Use the order-finding algorithm to find the orderr of y mod N, i.e.,r such thatyrmod N = 1.

5. If r is even andyr/2mod N 6= −1, then evaluategcd(yr/2±1,N). If one of these is a non-trivial factor
(i.e., other than 1), return that value as a factor. If not, goback to step 3 and repeat.

The success rate of the last three steps must be reasonably high since this is a probabilistic algorithm. See
discussions in the texts and in the paper of Ekert and Jozsa.

C/CS/Phys 191, Fall 2005, Lecture 19 5

	Readings
	Introduction
	Shor's order-finding algorithm
	modular exponentiation
	Period finding

	Using order-finding to factor large numbers N efficiently
	Euclid's algorithm for gcd(x,y)
	Shor's factoring algorithm

