
C/CS/Phys 191 Quantum Fourier Transform 10/27/05
Fall 2005 Lecture 18

1 Readings
Benenti et al., Ch. 3.11

Stolze and Suter, Quantum Computing, Ch. 8.3.4

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 5.1

2 Quantum Fourier Transform (QFT): all about phase
The Quantum Fourier Transform (QFT) implements the analog of the classical Fourier Transform. It trans-
forms a state space of size 2n from the amplitude to the frequency domain (just as the Fourier transform
can be viewed as a transform from 2n numbers into a range of size 2n containing the frequency components
from the amplitude domain.

The classical Fourier Transform is defined as:

yk ≡ 1√
2n

2n−1

∑
j=0

x je
2πi jk/2n

The QFT is similarly defined:

∣

∣ j
〉

−→ 1√
2n

2n−1

∑
k=0

e2πi jk/2n ∣
∣k

〉

Thus an arbitrary quantum state is transformed:
2n−1

∑
j=0

x j
∣

∣ j
〉

−→
2n−1

∑
k=0

yk
∣

∣k
〉

= 1√
2n

2n−1

∑
k=0

2n−1

∑
j=0

x je
2πi jk/2n ∣

∣k
〉

Example:
∣

∣00000
〉

+
∣

∣01000
〉

+
∣

∣10000
〉

+
∣

∣11000
〉

is transformed to:
∣

∣00000
〉

+
∣

∣00100
〉

+
∣

∣01000
〉

+
∣

∣011000
〉

+
∣

∣10000
〉

+
∣

∣10100
〉

+
∣

∣11000
〉

+
∣

∣11100
〉

i.e.: 0 8 16 24

is transformed to:

0 4 8 12 16 20 24 28

So how do we implement the QFT? This derivation is in Nielsen and Chuang at pages 216-219, but is
expanded in parts here for clarity.

We are going to work with the transform of a single quantum state, defined as:

C/CS/Phys 191, Fall 2005, Lecture 18 1

∣

∣ j
〉

−→ 1√
2n

2n−1

∑
k=0

e2πi jk/2n ∣
∣k

〉

(1)

Note that j is a binary number and can be decomposed into the form:

j = j12n−1 + j22n−2 + ...+ jn20 =
n

∑
i=1

ji2
n−i

Similarly for k

k =
n

∑
i=1

ki2
n−i

Use thek decomposition and leavej alone for now, to re-express the transform as

1√
2n

2n−1

∑
k=0

e
2πi j

n

∑
l=1

kl2
n−l

/2n
∣

∣k
〉

Canceling the 2n terms we have:

1√
2n

2n−1

∑
k=0

e
2πi j

n

∑
l=1

kl2
−l

∣

∣k
〉

Now write the exponent out explicitly:

1√
2n

2n−1

∑
k=0

e2πi jk12−1
× e2πi jk22−2

× . . .× e2πi jkn2−n∣
∣k

〉

Now, decompose the summation overk as a sum over the two allowed binary values 0 and 1 of each bitki:

1√
2n

1

∑
k1=0

1

∑
k2=0

. . .
1

∑
kn=0

e2πi jk12−1
× e2πi jk22−2

× . . .× e2πi jkn2−n∣
∣k1k2...kn

〉

Now, pull out then’th component:

1√
2n

1

∑
k1=0

1

∑
k2=0

. . .
1

∑
kn−1=0

e2πi jk12−1
× e2πi jk22−2

× . . .× e2πi jkn2−n∣
∣k1k2...kn−1

〉

1

∑
kn=0

e2πi jkn2−n ∣
∣k

〉

This last factor for then’th component is equal to:

1√
2n

(

∣

∣0
〉

+ e2πi j2−n ∣
∣1

〉

)

where the first component comes from thekn = 0 term and the second component from thekn = 1 term.
Repeating this for allki components leads to:

1√
2n

(

∣

∣0
〉

+ e2πi j2−1∣
∣1

〉

)(

∣

∣0
〉

+ e2πi j2−2∣
∣1

〉

)

. . .
(

∣

∣0
〉

+ e2πi j2−n ∣
∣1

〉

)

So now we have a tensor product of qubit states each of which contains a different phase factor,e
2πi

(

j
2k

)

,
where 1≤ k ≤ n. So if we can systematically generate these phase factors with quantum gates, we have a
means of implementing the QFT. We will now put them in a form inwhich this generation and the resulting
quantum circuit is easy to see.

First we define a new binary notation for a fraction - this corresponds to the analog of a decimal in base 10.
For a number lying between 0 and 1, the binary fraction is simply the expansion in powers of 1/2, which is
written in the ’decimal’ form as:

0. jl jl+1. . . jm = jl
2 + jl+1

22 + jm
2m−l+1

C/CS/Phys 191, Fall 2005, Lecture 18 2

where eachji = 0 or 1.

Now sincek ≤ n, the quantity j
2k is clearly a number greater than or equal to one, but it is not necessarily an

integer. We can use our binary fraction notation to write it as a ’rational binary’ number:

j
2k =

n

∑
ν

jν2n−ν−k

= j1 j2 . . . jn−k. jn−k+1 . . . jn

For example, ifn = 8 andk = 3, we have

j = j127 + j22
6 + j32

5 + j42
4 + j52

3 + j62
2 + j72

1 + j82
0

and
j

23 = j124 + j22
3 + j32

2 + j42
1 + j52

0 + j62
−1 + j72−2 + j82

−3.

From this it is clear that the last three terms are the binary fraction 0. j6 j7 j8, while the first five terms
constitute an integer.

Now coming back to the phase factore
2πi

(

j
2k

)

, we now see that the integer part ofj
2k will merely contribute

a factor of 1 and that the phase is therefore entirely determined by the binary fraction:

e
2πi

(

j
2k

)

= 1· e0. jn−k+1... jn

We can now apply this to every term in the transform, to rewrite it as
1√
2n

(
∣

∣0
〉

+ e2πi0. jn
∣

∣1
〉)(

∣

∣0
〉

+ e2πi0. jn−1 jn
∣

∣1
〉)

. . .
(
∣

∣0
〉

+ e2πi0. j1 j2... jn
∣

∣1
〉)

(2)

To see how to actually implement this with quantum gates, lets look at any one of the qubits and how it
should be transformed:

1√
2

(∣

∣0
〉

+ e2π0. jl ... jn
∣

∣1
〉)

Pull off the first component:
1√
2

(∣

∣0
〉

+ e2πi0. jl × e2π0.0 jl−1... jn/2
∣

∣1
〉)

Looking at the first component only, i.e., qubit 1:

1√
2

(
∣

∣0
〉

+ e2πi0. jl
∣

∣1
〉)

= 1√
2

(
∣

∣0
〉

+ e2πi jl/2
∣

∣1
〉)

= 1√
2

(

∣

∣0
〉

+(−1) jl
∣

∣1
〉

)

since 0. jl = jl/2 and usingeiπ jl = (−1) jl where jl = 0,1. This is just anH gate!

What aboute2π0.0 jl−1... jn/2? For this we can use a sequence of rotations of the form

Rk =

[

1 0
0 e2πi/2k

]

that are controlled by the value of thejk’th qubit. Thus we will apply this rotation conditionally toqubit
1, i.e., if jk is equal to 1, we applyRk, while if jk = 0, we do nothing. We implement this sequence of
controlled rotations starting with the least significant digit first, i.e., jl−1 in the above example.

Lets go through the entire procedure now. We want to achieve
(∣

∣0
〉

+ e2πi0. j1 j2... jn
∣

∣1
〉)

.

Start with
∣

∣ j1
〉
∣

∣ j2. . . jn
〉

.

Apply H on qubit 1 to obtain
1√
2

(∣

∣0
〉

+ e2πi0. j1
∣

∣1
〉)∣

∣ j2. . . jn
〉

C/CS/Phys 191, Fall 2005, Lecture 18 3

Apply a controlledR2 rotation on qubit 1, with qubit 2 the control, to obtain
1√
2

(∣

∣0
〉

+ e2πi0. j1 j2
∣

∣1
〉)∣

∣ j2. . . jn
〉

Apply controlledR3 on qubit 1, with qubit 3 the control, to obtain
1√
2

(∣

∣0
〉

+ e2πi0. j1 j2 j3
∣

∣1
〉)∣

∣ j2. . . jn
〉

Continue down to qubitn, to obtain
1√
2

(
∣

∣0
〉

+ e2πi0. j1 j2... jn
∣

∣1
〉)

∣

∣ j2. . . jn
〉

This entire procedure is then repeated for the other qubits,i.e., j2, then j3, etc. etc., resulting in the final
transformed state:

1√
2n

(
∣

∣0
〉

+ e2πi0. j1 j2... jn
∣

∣1
〉)(

∣

∣0
〉

+ e2πi0. j2... jn
∣

∣1
〉)

. . .
(
∣

∣0
〉

+ e2πi0. jn
∣

∣1
〉)

That’s almost it: comparing this with Eq. (2), you may notice that the result has ended up with the bits in
reverse order. This is not a problem, we can just swap them pairwise, starting from the ends and moving to
the middle, using the SWAP circuit of lecture 8 (3 CNOT gates in alternating orientation). Then finally we
have the QFT state of Eqs. (2) and (1):

1√
2n

(
∣

∣0
〉

+ e2πi0. jn
∣

∣1
〉)(

∣

∣0
〉

+ e2πi0. jn−1 jn
∣

∣1
〉)

. . .
(
∣

∣0
〉

+ e2πi0. j2... jn
∣

∣1
〉)(

∣

∣0
〉

+ e2πi0. j1 j2... jn
∣

∣1
〉)

R2H R3 Rn

H Rn−1R2

H

Figure 1: Quantum circuit implementing the Quantum FourierTransform (QFT) on a quantum state input at
the left. The first qubit is at the top, as usual. Note that the outputs are reversed in their bit-significance, i.e.,
qubit 1 contains the state of qubitn, etc. Following this circuit by a series of SWAP gates will then produce
the final QFT state.

How many gates are required? Qubit 1 requiredH andn−1 controlledR gates, so a total ofn gates. Qubit
2 requiredH and n− 2 controlledR gates, so a total ofn− 1 gates. Continuing, we see that altogether
n + (n− 1) + (n− 2) . . . + 1 = n(n + 1)/2 gates are required, plus the final series of SWAP gates. These
are of ordern/2 (depending whethern is even or odd), so that the overall scaling of the QFT isO(n2). So
we have polynomial scaling of the number of gates with the number of input qubits - an efficient quantum
algorithm!

How does this compare with classical Fourier Transforms? Well, the simple Fourier transform shown at the
very beginning of the lecture can be written as a matrix timesa vector, where the matrix is of sizeN = 2n.
Thus the direct classical Fourier Transform scales asO((2n)2), which is clearly exponential. In physics the
scaling is often written asN2 but don’t let that fool you - remember to ask how many bitsn there are! There
exists a more efficient classical algorithm, the fast fourier transform or FFT, which improves on this to give
a scalingO(NlnN). Clearly this is still exponential inn. So the QFT provides a truly significant quantum

C/CS/Phys 191, Fall 2005, Lecture 18 4

speedup.

Note that the QFT is unitary (since we could construct a unitary circuit for it). The classical transform is
also unitary, as you can show by analyzing the FT matrix (see additional notes).

C/CS/Phys 191, Fall 2005, Lecture 18 5

	Readings
	Quantum Fourier Transform (QFT): all about phase

