C/CS/Phys 191 Quantum Fourier Transform 10/27/05
Fall 2005 Lecture 18

| Readings

Benenti et al., Ch. 3.11
Stolze and Suter, Quantum Computing, Ch. 8.3.4
Nielsen and Chuang, Quantum Computation and Quantum latowm Ch. 5.1

2 Quantum Fourier Transform (QFT) all about phase

The Quantum Fourier Transform (QFT) implements the anafdbeoclassical Fourier Transform. It trans-
forms a state space of siz8 #om the amplitude to the frequency domain (just as the Eouransform
can be viewed as a transform frorhr@umbers into a range of siz& 2ontaining the frequency components
from the amplitude domain.

The classical Fourier Transform is defined as:
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The QFT is similarly defined:
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Thus an arbitrary quantum state is transformed:
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Example:

/00000 + |01000 +|10000 + |11000
is transformed to:

/00000 + 00100 -+ |01000 + [011000
+|10000 + |10100 +|11000 +|11100

i.e.: 0O 8 16 24
is transformed to:
0O 4 8 12 16 20 24 28

So how do we implement the QFT? This derivation is in Nielsed €huang at pages 216-219, but is
expanded in parts here for clarity.

We are going to work with the transform of a single quantuntestefined as:
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Note thatj is a binar;number and can be decomposed into the form:
j=12" 1+ 2" 24 4 a2l = _ijizn_i
Similarly for k -
k= _imzﬂi
Use thek delc:omposition and leavealone for now, to re-express the transform as
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Canceling the 2terms we have:
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Now write the exponent out explicitly:
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Now, decompose the summation okaas a sum over the two allowed binary values 0 and 1 of eadty: bit

1 1 1 .. - .. - .. _n
\/% z Z z ik o nijke2™® o 2 jk2 kiko...kn)
Ki=0K=0  Ki=0

Now, pull out then'th component:
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This last factor for the'th component is equal to:

1 ij2"
4 (o) +em2" 1))
where the first component comes from #e= 0 term and the second component from khe= 1 term.
Repeating this for ak; components leads to:

L (10 +em271) ) (|0) + €127 [1) ) ... (|o) + #1127 |1) )

So now we have a tensor product of qubit states each of whictaice a different phase factcarz,m(@,
where 1< k < n. So if we can systematically generate these phase facttisqwantum gates, we have a
means of implementing the QFT. We will now put them in a formvimich this generation and the resulting
guantum circuit is easy to see.

1 .. —n
kiko.. .k 1) 5 €710
kn=0

First we define a new binary notation for a fraction - this esponds to the analog of a decimal in base 10.
For a number lying between 0 and 1, the binary fraction is Birtipe expansion in powers of/2, which is
written in the 'decimal’ form as:

O.jijiss - jm= 4+ 52 + 585
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where eachj; =0 or 1.

Now sincek < n, the quantity% is clearly a number greater than or equal to one, but it is acéssarily an
integer. We can use our binary fraction notation to writesibdrational binary’ number:

l — ijvzn—v—k
2k .
= j1j2---jn—k-jn—k+1---jn
For example, ih = 8 andk = 3, we have
Jo= 2 22 a2+ a2+ 52+ 627 + 721 + j82°
and% = 124222+ 322+ ja2' + js20+ g2 1+ j7272 + jg272.

From this it is clear that the last three terms are the bingagtibn Qjgj7js, while the first five terms
constitute an integer.

Now coming back to the phase facer (?JO , we now see that the integer partgafwill merely contribute
a factor of 1 and that the phase is therefore entirely detexthby the binary fraction:

eZTli (EJE) =1. e0~jn—k+1-~~jn
We can now apply this to every term in the transform, to remitias
7z ((0) + &m0 (1)) (|0) +mOInal|1)) . (|0) +2MOlz-ho|1)) - (2)

To see how to actually implement this with quantum gates, Itk at any one of the qubits and how it
should be transformed:

35 (10) +er0fa))
Pull off the first component:
L (|0) + €20 x O0i-1--in/2| 1)
Looking at the first component only, i.e., qubit 1:
5 (10) +&m001)) = 5 (|0) +&m/2[1)) = 3 (|0) + (1) (1))

since 0j; = j;/2 and usingg™' = (—1)) wherej; = 0,1. This is just arH gate!

What aboug?™0ii-1--in/29 For this we can use a sequence of rotations of the form

1 0
[ gn?
that are controlled by the value of thgth qubit. Thus we will apply this rotation conditionally wubit
1, i.e., if jx is equal to 1, we applyRg, while if jx = 0, we do nothing. We implement this sequence of
controlled rotations starting with the least significargitiirst, i.e., jj_1 in the above example.

Lets go through the entire procedure now. We want to achieve
(|0> o @2M0-j1j2...jn |1> )

Start with|j1) |j2. .. jn) -

Apply H on qubit 1 to obtain
73 ((0) + (1)) ... jn)
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Apply a controlledR; rotation on qubit 1, with qubit 2 the control, to obtain
75 (10) +em012[1)) [fa....jn)

Apply controlledR; on qubit 1, with qubit 3 the control, to obtain
% (|0) +€#01i213|1) ) | o. .. jn)

Continue down to qubin, to obtain
35 (0) +&03k (1)) i)

This entire procedure is then repeated for the other qubdts,j,, then js, etc. etc., resulting in the final
transformed state:

7 ((0) +&m0izn[1)) (|0) +emCz-hn[1)) .. ([0) &m0 [1))

That'salmost it: comparing this with Eq. (2), you may notice that the ré$isls ended up with the bits in

reverse order. This is not a problem, we can just swap therwisai, starting from the ends and moving to
the middle, using the SWAP circuit of lecture 8 ( 3 CNOT gatealternating orientation). Then finally we

have the QFT state of Egs. (2) and (1):

7 (|0) +&00|1)) (|0) +0nah|1)) .. (|0) + €m0 2-In[1)) (|O) + 2Ozl |1) )

-

Figure 1: Quantum circuit implementing the Quantum FouFransform (QFT) on a quantum state input at
the left. The first qubit is at the top, as usual. Note that thiputs are reversed in their bit-significance, i.e.,
gubit 1 contains the state of quinitetc. Following this circuit by a series of SWAP gates wikhproduce
the final QFT state.

How many gates are required? Qubit 1 requiredndn — 1 controlledR gates, so a total af gates. Qubit

2 requiredH andn— 2 controlledR gates, so a total ai — 1 gates. Continuing, we see that altogether
n+(n—1)+(n—2)...+1=n(n+1)/2 gates are required, plus the final series of SWAP gates.eThes
are of ordem/2 (depending whethar is even or odd), so that the overall scaling of the QFD({8?). So

we have polynomial scaling of the number of gates with the lmemof input qubits - an efficient quantum
algorithm!

How does this compare with classical Fourier Transforms#®, e simple Fourier transform shown at the
very beginning of the lecture can be written as a matrix tism&sctor, where the matrix is of sid¢= 2".
Thus the direct classical Fourier Transform scale®@&")?), which is clearly exponential. In physics the
scaling is often written al? but don't let that fool you - remember to ask how many bitiere are! There
exists a more efficient classical algorithm, the fast faumansform or FFT, which improves on this to give
a scalingO(NInN). Clearly this is still exponential in. So the QFT provides a truly significant quantum
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speedup.

Note that the QFT is unitary (since we could construct a ayitircuit for it). The classical transform is
also unitary, as you can show by analyzing the FT matrix (gei#ianal notes).
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