1 Readings

Benenti et al., Ch. 3.11

Stolze and Suter, Quantum Computing, Ch. 8.3.4

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 5.1

2 Quantum Fourier Transform (QFT): all about phase

The Quantum Fourier Transform (QFT) implements the analog of the classical Fourier Transform. It transforms a state space of size 2^{n} from the amplitude to the frequency domain (just as the Fourier transform can be viewed as a transform from 2^{n} numbers into a range of size 2^{n} containing the frequency components from the amplitude domain.
The classical Fourier Transform is defined as:

$$
y_{k} \equiv \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} x_{j} e^{2 \pi i j k / 2^{n}}
$$

The QFT is similarly defined:

$$
|j\rangle \longrightarrow \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i j k / 2^{n}}|k\rangle
$$

Thus an arbitrary quantum state is transformed:

$$
\sum_{j=0}^{2^{n}-1} x_{j}|j\rangle \longrightarrow \sum_{k=0}^{2^{n}-1} y_{k}|k\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} \sum_{j=0}^{2^{n}-1} x_{j} e^{2 \pi i j k / 2^{n}}|k\rangle
$$

Example:

$$
|00000\rangle+|01000\rangle+|10000\rangle+|11000\rangle
$$

is transformed to:

$$
\begin{aligned}
& |00000\rangle+|00100\rangle+|01000\rangle+|011000\rangle \\
& +|10000\rangle+|10100\rangle+|11000\rangle+|11100\rangle
\end{aligned}
$$

i.e.: $\quad \begin{array}{lllll}0 & 8 & 16 & 24\end{array}$
is transformed to:

$$
\begin{array}{llllllll}
0 & 4 & 8 & 12 & 16 & 20 & 24 & 28
\end{array}
$$

So how do we implement the QFT? This derivation is in Nielsen and Chuang at pages 216-219, but is expanded in parts here for clarity.

We are going to work with the transform of a single quantum state, defined as:

$$
\begin{equation*}
|j\rangle \longrightarrow \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i j k / 2^{n}}|k\rangle \tag{1}
\end{equation*}
$$

Note that j is a binary number and can be decomposed into the form:

$$
j=j_{1} 2^{n-1}+j_{2} 2^{n-2}+\ldots+j_{n} 2^{0}=\sum_{i=1}^{n} j_{i} 2^{n-i}
$$

Similarly for k

$$
k=\sum_{i=1}^{n} k_{i} 2^{n-i}
$$

Use the k decomposition and leave j alone for now, to re-express the transform as

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i j} \sum_{l=1}^{n} k_{l} 2^{n-l} / 2^{n}|k\rangle
$$

Canceling the 2^{n} terms we have:

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i j \sum_{l=1}^{n} k_{l} 2^{-l}}|k\rangle
$$

Now write the exponent out explicitly:

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i j k_{1} 2^{-1}} \times e^{2 \pi i j k_{2} 2^{-2}} \times \ldots \times e^{2 \pi i j k_{n} 2^{-n}}|k\rangle
$$

Now, decompose the summation over k as a sum over the two allowed binary values 0 and 1 of each bit k_{i} :

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k_{1}=0}^{1} \sum_{k_{2}=0}^{1} \ldots \sum_{k_{n}=0}^{1} e^{2 \pi i j k_{1} 2^{-1}} \times e^{2 \pi i j k_{2} 2^{-2}} \times \ldots \times e^{2 \pi i j k_{n} 2^{-n}}\left|k_{1} k_{2} \ldots k_{n}\right\rangle
$$

Now, pull out the n 'th component:

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k_{1}=0}^{1} \sum_{k_{2}=0}^{1} \ldots \sum_{k_{n-1}=0}^{1} e^{2 \pi i j k_{1} 2^{-1}} \times e^{2 \pi i j k_{2} 2^{-2}} \times \ldots \times e^{2 \pi i j k_{n} 2^{-n}}\left|k_{1} k_{2} \ldots k_{n-1}\right\rangle \sum_{k_{n}=0}^{1} e^{2 \pi i j k_{n} 2^{-n}}|k\rangle
$$

This last factor for the n 'th component is equal to:

$$
\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i j 2^{-n}}|1\rangle\right)
$$

where the first component comes from the $k_{n}=0$ term and the second component from the $k_{n}=1$ term. Repeating this for all k_{i} components leads to:

$$
\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i j 2^{-1}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i j 2^{-2}}|1\rangle\right) \ldots\left(|0\rangle+e^{2 \pi i j 2^{-n}}|1\rangle\right)
$$

So now we have a tensor product of qubit states each of which contains a different phase factor, $e^{2 \pi i\left(\frac{j}{2^{k}}\right)}$, where $1 \leq k \leq n$. So if we can systematically generate these phase factors with quantum gates, we have a means of implementing the QFT. We will now put them in a form in which this generation and the resulting quantum circuit is easy to see.

First we define a new binary notation for a fraction - this corresponds to the analog of a decimal in base 10. For a number lying between 0 and 1 , the binary fraction is simply the expansion in powers of $1 / 2$, which is written in the 'decimal' form as:

$$
0 . j_{l} j_{l+1} \ldots j_{m}=\frac{j_{l}}{2}+\frac{j_{l+1}}{2^{2}}+\frac{j_{m}}{2^{m-l+1}}
$$

where each $j_{i}=0$ or 1 .
Now since $k \leq n$, the quantity $\frac{j}{2^{k}}$ is clearly a number greater than or equal to one, but it is not necessarily an integer. We can use our binary fraction notation to write it as a 'rational binary' number:

$$
\begin{aligned}
\frac{j}{2^{k}} & =\sum_{v}^{n} j_{v} 2^{n-v-k} \\
& =j_{1} j_{2} \ldots j_{n-k} \cdot j_{n-k+1} \ldots j_{n}
\end{aligned}
$$

For example, if $n=8$ and $k=3$, we have

$$
\begin{aligned}
j & =j_{1} 2^{7}+j_{2} 2^{6}+j_{3} 2^{5}+j_{4} 2^{4}+j_{5} 2^{3}+j_{6} 2^{2}+j_{7} 2^{1}+j_{8} 2^{0} \\
\text { and } \frac{j}{2^{3}} & =j_{1} 2^{4}+j_{2} 2^{3}+j_{3} 2^{2}+j_{4} 2^{1}+j_{5} 2^{0}+j_{6} 2^{-1}+j_{7} 2^{-2}+j_{8} 2^{-3} .
\end{aligned}
$$

From this it is clear that the last three terms are the binary fraction $0 . j_{6} j_{7} j_{8}$, while the first five terms constitute an integer.
Now coming back to the phase factor $e^{2 \pi i\left(\frac{j}{2^{k}}\right)}$, we now see that the integer part of $\frac{j}{2^{k}}$ will merely contribute a factor of 1 and that the phase is therefore entirely determined by the binary fraction:

$$
e^{2 \pi i\left(\frac{j}{2 k}\right)}=1 \cdot e^{0 \cdot j_{n-k+1} \cdots j_{n}}
$$

We can now apply this to every term in the transform, to rewrite it as

$$
\begin{equation*}
\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n-1} j_{n}}|1\rangle\right) \ldots\left(|0\rangle+e^{2 \pi i 0 \cdot j_{1} j_{2} \ldots j_{n}}|1\rangle\right) \tag{2}
\end{equation*}
$$

To see how to actually implement this with quantum gates, lets look at any one of the qubits and how it should be transformed:

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi 0 . j_{l} \ldots j_{n}}|1\rangle\right)
$$

Pull off the first component:

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 . j_{l}} \times e^{2 \pi 0.0 j_{l-1} \ldots j_{n} / 2}|1\rangle\right)
$$

Looking at the first component only, i.e., qubit 1:

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{l}}|1\rangle\right)=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i j_{l} / 2}|1\rangle\right)=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{j_{l}}|1\rangle\right)
$$

since $0 . j_{l}=j_{l} / 2$ and using $e^{i \pi j_{l}}=(-1)^{j_{l}}$ where $j_{l}=0,1$. This is just an H gate!
What about $e^{2 \pi 0.0 j_{l_{-1} \ldots j_{n} / 2}}$? For this we can use a sequence of rotations of the form

$$
R_{k}=\left[\begin{array}{rr}
1 & 0 \\
0 & e^{2 \pi i / 2^{k}}
\end{array}\right]
$$

that are controlled by the value of the j_{k} 'th qubit. Thus we will apply this rotation conditionally to qubit 1 , i.e., if j_{k} is equal to 1 , we apply R_{k}, while if $j_{k}=0$, we do nothing. We implement this sequence of controlled rotations starting with the least significant digit first, i.e., j_{l-1} in the above example.
Lets go through the entire procedure now. We want to achieve

$$
\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right) .
$$

Start with $\left|j_{1}\right\rangle\left|j_{2} \ldots j_{n}\right\rangle$.
Apply H on qubit 1 to obtain

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1}}|1\rangle\right)\left|j_{2} \ldots j_{n}\right\rangle
$$

Apply a controlled R_{2} rotation on qubit 1 , with qubit 2 the control, to obtain

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2}}|1\rangle\right)\left|j_{2} \ldots j_{n}\right\rangle
$$

Apply controlled R_{3} on qubit 1 , with qubit 3 the control, to obtain

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{1} j_{2} j_{3}}|1\rangle\right)\left|j_{2} \ldots j_{n}\right\rangle
$$

Continue down to qubit n, to obtain

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right)\left|j_{2} \ldots j_{n}\right\rangle
$$

This entire procedure is then repeated for the other qubits, i.e., j_{2}, then j_{3}, etc. etc., resulting in the final transformed state:

$$
\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 \cdot j_{2} \ldots j_{n}}|1\rangle\right) \ldots\left(|0\rangle+e^{2 \pi i 0 . j_{n}}|1\rangle\right)
$$

That's almost it: comparing this with Eq. (2), you may notice that the result has ended up with the bits in reverse order. This is not a problem, we can just swap them pairwise, starting from the ends and moving to the middle, using the SWAP circuit of lecture 8 (3 CNOT gates in alternating orientation). Then finally we have the QFT state of Eqs. (2) and (1):

$$
\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i 0 . j_{n}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{n-1} j_{n}}|1\rangle\right) \ldots\left(|0\rangle+e^{2 \pi i 0 . j_{2} \ldots j_{n}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right)
$$

Figure 1: Quantum circuit implementing the Quantum Fourier Transform (QFT) on a quantum state input at the left. The first qubit is at the top, as usual. Note that the outputs are reversed in their bit-significance, i.e., qubit 1 contains the state of qubit n, etc. Following this circuit by a series of SWAP gates will then produce the final QFT state.

How many gates are required? Qubit 1 required H and $n-1$ controlled R gates, so a total of n gates. Qubit 2 required H and $n-2$ controlled R gates, so a total of $n-1$ gates. Continuing, we see that altogether $n+(n-1)+(n-2) \ldots+1=n(n+1) / 2$ gates are required, plus the final series of SWAP gates. These are of order $n / 2$ (depending whether n is even or odd), so that the overall scaling of the QFT is $O\left(n^{2}\right)$. So we have polynomial scaling of the number of gates with the number of input qubits - an efficient quantum algorithm!
How does this compare with classical Fourier Transforms? Well, the simple Fourier transform shown at the very beginning of the lecture can be written as a matrix times a vector, where the matrix is of size $N=2^{n}$. Thus the direct classical Fourier Transform scales as $O\left(\left(2^{n}\right)^{2}\right)$, which is clearly exponential. In physics the scaling is often written as N^{2} but don't let that fool you - remember to ask how many bits n there are! There exists a more efficient classical algorithm, the fast fourier transform or FFT, which improves on this to give a scaling $O(N \ln N)$. Clearly this is still exponential in n. So the QFT provides a truly significant quantum
speedup.
Note that the QFT is unitary (since we could construct a unitary circuit for it). The classical transform is also unitary, as you can show by analyzing the FT matrix (see additional notes).

