C / CS / Phys 191 Spin manipulation [I (resonance), quantum gates on spins 10 / 20 / 05
Fall 2005 Lecture 16

| Readings

Liboff, Introductory Quantum Mechanics, Ch. 11
Stolze and Suter, Quantum Computing, Ch. 10
Nielsen and Chuang, Quantum Computation and Quantum latowm Ch. 7.7.2, 7.7.3

2 Spin Resonance and single qu]ait gates

How do we control qubit states in the lab? |if(t)) = a(t)|0) + B(t)|1), how do we deterministically
changea and(3?

We know that the Hamiltonian evolves things in time, so if wenton a field then the Hamiltonian will
evolve the state vig "'/,

For a static magnetic field we saw in the last lecture thatahisvs us to rotate qubit state from one point
on the Bloch sphere to another via Larmor precession:

€Bo
m

R (A) = e 1S49/M Ag — 0Nt B = Bo%,

This rotation has to occur at a rate determined by the madmitiiBy which is fast. To get better control
we would like to have a slower rotatioQuestion: How can we maintain energy level splitting betwe#é}n
and|1> andcontrol the rate at which a qubit rotates between states? (i.e. ehiaaga rate different from

w=%2)
Answer: Spin Resonance gives us a hew level of control (most cleadn 1 NMR).

How it works: Turn on a big DC fieldB, and a little AC fieldB sin( w, t) that is tuned to the resonance
€Bo.
W = >

Figure 1:
The small AC field induces controlled mixing betwef@h and|1)... “SPIN FLIPS”.

We must solve the Schrodinger equation to understand wigaing on:

T |w(v) = Alw)

[EnY
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It is convenient to use column vector notation:

ww) =aw)o) + oy = (5 )

What's the Hamiltonian™ = —[i-B= £S.B

We now let the magnetic field be composed of the large biasd®elkfore, together with a small oscillating
transverse field:

B = By2+ B1cosuutX

With this we obtain the Hamiltonian:

~ e A e ~
H=—-B — By cosut
= oSz+m 1COSt S,

Now use 2 matrix formulation, where the Pauli matricé3 € goz, etc.) are of course eminently useful:

~ e_h/1 o0 e h/o 1
H_—Bo-—<0 _1>+ﬁBlcoswot-§<1 0)

m - 2
The two terms sum to give the following>22 Hamiltonian matrix (expressed in t&ebasis):

G- i Bo B coswpt
~ 2m \ Bicosupt —Bo

Now we can plug this Hamiltonian into the Schr. equation asidesfor \Lp>

Abit of intuition on QM: If you construct a Hamiltonian matrix in some basis, thenrttarix element;;
tells us how much application of the Hamiltonian tends tadsamarticle from stat¢j> to state|i>. (The

units are of course energy rate of transitions$l frequencyld % O H—#)
So, if we only hadB = B,2 andB; = 0, then what would the rate of spin flip transitions be?
rate._; O(i|H|j) = (1|H|0) = Hpy = 0!
So, we can conclude that we NEED to have a field perpendionidretlarge bias fiel@ = B,z in order to
induce “spin flips” or to mix up(0> and \1} states in|Lp>. This is perhaps more obvious in case of spin,

but not as obvious for other systems. It is important to dgvelur quantum mechanical intuition which can
easily get lost in the math!

Now let’s solve the Schr. equation for Spin Resonance.

o) =in2 (60 ) = 55 (st e ) (58 )
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We get two coupled differential equations. First, we detige= % andw, = %, where the latter quantity

is defined with a seemingly annoying factor of 1/2. It'll madense later, though.

290 (1) + encos(axt) B1)
PO eancos(atia(t) - L)

To solve these coupled first order differential equationgwedée a substitution followed by an approxima-
tion. The substitution is

a(t) = a(t)d“/?

b(t) = B(t)e /2
and amounts to transforming to a frame rotating around thés with frequency,.
The approximation involves a recognition thaf is much larger thawy and so these fast rotations average

to zero on the timescalesdly (which are the relevant experimental timescales) and careplected relative
to unity. This is referred to as the 'rotating wave approxXiora:

eﬂi%t+1N1
2 272

coS( Gt ) et =

Using this transformation to a rotating frame and the rotatvave approximation, after a little algebra we
obtain the following differential equations for a(t) and)h(

d%alt) o?
a2 Ta(t)

The equation foa(t) is a familiar second order differential equation, with siwins
a(t) = cr@“Y/2 4 cpeint/2
and hence

b(t) = —c@“/2 4 greient/2,

The coefficient€; andc, are determined by the initial coniditions. We may then abthe general solution
for any initial conditionsa (0),3(0). Now we can construct the 2x2 matrix corresponding to théaoni
evolution operatob (t) by solving first for the initial conditions iy (0) = 1, 3(0) = 0, and then ii) for the
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initial conditionsa (0) = 1, 3(0) = 1. The solution to i) gives the first column df(t) and the solution to ii)
gives the second column bf(t):

()

a Uir Up
B(t)

Ui U

a(0)
B(0)

i) initial condition a (0) = 1, 3(0) = O (this is| + 1/2> = \0> = north pole on the Bloch sphere).
This corresponds to; = ¢; = 1/2 and yields the following solution:

at)\ [ e'PlcosLt
Bt) ) —ie+'*tsm‘*’lt
What does this mean geometrically? Let’s go to the Bloch gdi@ur generalized Bloch vector looks like:
6 0. 0O
) = cos§|0> +e'“’sm§|l>
Our time-dependent state that is a solution to the Schr.tiequiaoks like:
() = &t/ (cos 0) + (st \1>)
which apart from the global phase factor is of the same forrthagrevious equation, with azimuth=

wot — 11/2. Therefore we can conclude that the qubit state is rotéfirecessing) arounzlat a ratew,.

What about9? 6 = wyt, so the qubit state is simultaneously traveling down thespht a ratey = % at
the same time that it is much more rapidly precessing abatithe fastw,, the Larmor frequency. We can
control wy very precisely by changing the amplitude of the weak f2ldEven thoughuy is very large w;
can be very small, allowing a greater degree of contiiite: As spins flip out of ground state they suck
energy out of the “RF field"B;coswy,). This is easily detected and forms the basis of NMR.

i) initial condition a(0) = 0,3(0) =1 (this is\ —-1/2) = |1> = south pole on the Bloch sphere).

This corresponds to; = —1/2,¢c, = +1/2 and yields the following solution:

at) \ [ —ieFlsin%t
Bt) )\ e'%lcost.
Putting the solutions for the two initial conditions togethwe obtain

—i Ptoogil e i Ptgnw
Ul = :[ e '2fcosGt —ie'2 sm7t]

—iet Ztsingt et 2 costt
W LR
it /2 ~ cost —isin%t
—iet®tendt et tcost

e

Now for wet = 211, @t =1, d®t/2 = _1, and we obtain

cos%t —isin%t
Vagear = (= )[ —isin%t cosét ]

Now recall from Homework 1, that a rotation around ¥axis corresponds to the operator

Y _isin¥
i~ (_1) _cc_;s% |S|n% .
—isinf  cos}
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So we have arrived at the gat, -2 = (—1)e*‘%x, where the anglg = wit, i.e., we have a gate corre-
sponding to a rotation about tleaxis of the amountoyt.

We have already specified the prodagt, but we still have one more parameter to play with, namaly
Hence we can choose the value of this such éhat= 1, to arrive at theX gate:
.10 1
Uaean= (-0 | § g ].

Note the global phase of +i. These phases must be kept tragkeri gates are performed sequentially on
different qubits, i.e., when they are no longer 'global’ be entire qubit array.

Thus an alternating magnetic field along theaxis allows us to realize aX¥ gate for a physical spin real-
ization of a qubit. Similarly, an alternating magnetic figidng they-axis allows us to realize ¥ gate.
Together, these allow any arbitrary unitary transfornratio be made on a single qubit, i.e., any arbitrary
transformation on the Bloch sphere. Note that a rotatiorutatte z-axis can now be made either by com-
bining x- andy-rotations, e.g., with

e—igz _ e—igYei%’xeng
or by a free Larmor precession for a finite time.

In principle, the fields should be switched off when the gatadhieved, if one wishes to preserve the final
state and not further time evolve it under the two fields. Tleakwvalternating field is usually easy to switch
off, hence the term 'RF pulse’. The large static field is nokasy to turn off and one has to then keep track
of the accumulated phase on the qubit resulting from furtla@mor precession.

3 Two qu]ait gates for coup]ed spins

Electron and nuclear spins can interact directly via a dipobupling, or indirectly through chemical bonds
(electron density) connecting them in some structure.guidis both of these can often be approximated by
the Ising-type interaction

Hint = JS1Sp.

whereJ measures the strength of the coupling. The Hamiltonianviordoupled spins is theH = H; +
H2 + Hix. Consider two spins A and B with possibly different Larmogduenciesua, ws (due, e.g., to
different g factors, or for nuclear spins to different loo@gnetic field strengths within a molecule). In the
S basis the Hamiltonian matrix is given by

H = —aSa—wsSs+IS5aSs
—wp—wp+ P 0 0 0
R 0 —watwg—2 0 0
S 2 0 0 wr—ws— 7 0
0 0 0 watws+P

where the two-qubit basis states are ordered as usual as

00
01
10
11
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Figure 2: Energy levels of 2 spins coupled by Ising-like iattion

Now suppose, e.g., thaix > wg andJ > 0. Then the energy levels are of the form in Figure 2. Therelare
possible single spin resonance transitions: their enefgare

e 11+—T], ie., 00+—— 01

Jh Jh\ | h
= [ D) ()
= [ZwB—Jfﬂg
Jh
- (@-3)n
e 11+—17, ie., 00+~ 10
Jh JA\ | h
e
= [ZOOA—Jﬁ]g
h
= <O.)A—J7>ﬁ
e Tl<—]],ie.,, 01+—— 11
Jh Jh\ | h
(rat) (e 3
= [ZwA—i-Jﬁ]g—
= <O.)A—|-%T>ﬁ
e [T«—1],lIe., 10— 11

A= |(+ontans )~ (+on-w—| 0
= AOOB2 AOOB22

h

~ (@+Z)n

A

2
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The resulting spin resonance spectrum will look like FigBre Then selectively exciting the spiB at
frequencyws + Jh/2 will give the transition 16— 11 but will not affect spin A. This therefore gives us a
CNOT gate:

1 000
0100
CNOT = 000 1
0010

In practice, frequency selective pulses require relatilaig time to realize which has disadvantages (allow-
ing more bad interactions with the environment that canrdgshe quantum coherence). Experimentalists
implementing quantum gates with nuclear spins usuallygoriefwork with shorter pulses that then possess
a broader ’bandwidth’, i.e., include many resonance fragies and address mutliple transitions. See Stolze
and Suter, Ch. 10.2.5 for an example of how the CNOT gate cactieved in this situation.

4 Refocusing spin interactions

The spin-spin interaction is always on. So how can we impitgnaesingle qubit gate in the presence of
coupling to the second qubit? In Homework 4 you showed thagpgos interacting with an Ising coupling,
the effect of this coupling can be removed by conjugatindnait X gate. Specifically, with

Hint = goz(1> ® 02(2>.

you showedX@U ()X =U~1(t), whereU (t) = e ™ and henc&X DU (t)X(@U (t) = 1. Thus if we have
the full two-qubit interaction,

H =aZ; + bZy + Hin

and apply the above conjugation by an X gate on qubit 2, youbeileft with the free spin precession of
qubit 1:

o IHt /Ay (2) g-iHt Ay (2) _ o-ibZat/R

Using another set of refocusing pulses on spin 2 can furdmove this free spin precession of qubit 1. See
Stolze and Suter, Ch. 10.1.7, and/or Nielsen and Chuang/.Cl3.
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Figure 3. Spin resonance spectrum of two spins coupled by isiteraction. Each single spin resonance
line a is split into two lines,w — Jh/2 andw + Jh/2.
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