
C/CS/Phys 191 Spin manipulation II (resonance), quantum gates on spins 10/20/05
Fall 2005 Lecture 16

1 Readings
Liboff, Introductory Quantum Mechanics, Ch. 11

Stolze and Suter, Quantum Computing, Ch. 10

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 7.7.2, 7.7.3

2 Spin Resonance and single qubit gates
How do we control qubit states in the lab? If

∣

∣ψ(t)
〉

= α(t)
∣

∣0
〉

+ β (t)
∣

∣1
〉

, how do we deterministically
changeα andβ?

We know that the Hamiltonian evolves things in time, so if we turn on a field then the Hamiltonian will
evolve the state viae−iĤt/h̄.

For a static magnetic field we saw in the last lecture that thisallows us to rotate qubit state from one point
on the Bloch sphere to another via Larmor precession:

R̂i(∆θ) = e−iŜi∆θ/h̄,∆θ =
eBo

m
∆t,~B = Box̂i

This rotation has to occur at a rate determined by the magnitude ofB0 which is fast. To get better control
we would like to have a slower rotation.Question: How can we maintain energy level splitting between

∣

∣0
〉

and
∣

∣1
〉

andcontrol the rate at which a qubit rotates between states? (i.e. change it at a rate different from
ωo = eBo

m .)

Answer: Spin Resonance gives us a new level of control (most clearly seen in NMR).

How it works: Turn on a big DC fieldBo and a little AC field~B sin( ωo t) that is tuned to the resonance
ωo = eBo

m :

Figure 1:

The small AC field induces controlled mixing between
∣

∣0
〉

and
∣

∣1
〉

... “SPIN FLIPS”.

We must solve the Schrodinger equation to understand what isgoing on:

ih̄
∂
∂ t

∣

∣ψ(t)
〉

= Ĥ
∣

∣ψ(t)
〉
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It is convenient to use column vector notation:

∣

∣ψ(t)
〉

= α(t)
∣

∣0
〉

+ β (t)
∣

∣1
〉

=

(

α(t)
β (t)

)

What’s the Hamiltonian?̂H =−~µ ·~B = e
m
~S ·~B

We now let the magnetic field be composed of the large bias fieldas before, together with a small oscillating
transverse field:

~B = Boẑ+ B1cosωotx̂

With this we obtain the Hamiltonian:

Ĥ =
e
m

BoŜz +
e
m

B1cosωotŜx

Now use 2×2 matrix formulation, where the Pauli matrices (Ŝz = h̄
2σz, etc.) are of course eminently useful:

Ĥ =
e
m

Bo ·
h̄
2

(

1 0
0 −1

)

+
e
m

B1cosωot ·
h̄
2

(

0 1
1 0

)

The two terms sum to give the following 2×2 Hamiltonian matrix (expressed in theŜz basis):

Ĥ =
eh̄
2m

(

Bo B1cosωot
B1cosωot −Bo

)

Now we can plug this Hamiltonian into the Schr. equation and solve for
∣

∣ψ
〉

.

A bit of intuition on QM: If you construct a Hamiltonian matrix in some basis, then thematrix elementHi j

tells us how much application of the Hamiltonian tends to send a particle from state
∣

∣ j
〉

to state
∣

∣i
〉

. (The

units are of course energy⇒ rate of transitions∝ frequency∝ E
h̄ ∝ Hi j

h̄ .)

So, if we only had~B = Boẑ and~B1 = 0, then what would the rate of spin flip transitions be?

ratei← j ∝
〈

i
∣

∣Ĥ
∣

∣ j
〉

=
〈

1
∣

∣Ĥ
∣

∣0
〉

= H21 = 0!

So, we can conclude that we NEED to have a field perpendicular to the large bias field~B = Boẑ in order to
induce “spin flips” or to mix up

∣

∣0
〉

and
∣

∣1
〉

states in
∣

∣ψ
〉

. This is perhaps more obvious in case of spin,
but not as obvious for other systems. It is important to develop our quantum mechanical intuition which can
easily get lost in the math!

Now let’s solve the Schr. equation for Spin Resonance.

Ĥ
∣

∣ψ(t)
〉

= ih̄
∂
∂ t

(

α(t)
β (t)

)

=
eh̄
2m

(

Bo B1cosωot
B1cosωot −Bo

)(

α(t)
β (t)

)
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We get two coupled differential equations. First, we defineωo = eBo
m andω1 = eB1

2m , where the latter quantity
is defined with a seemingly annoying factor of 1/2. It’ll makesense later, though.

i
∂α(t)

∂ t
=

ωo

2
α(t)+ ω1cos(ωot)β (t)

i
∂β (t)

∂ t
= ω1cos(ωot)α(t)−

ωo

2
β (t)

To solve these coupled first order differential equations wemake a substitution followed by an approxima-
tion. The substitution is

a(t) = α(t)eiωt/2

b(t) = β (t)e−iωt/2

and amounts to transforming to a frame rotating around thez axis with frequencyωo.

The approximation involves a recognition thatωo is much larger thanω1 and so these fast rotations average
to zero on the timescales 1/ω1 (which are the relevant experimental timescales) and can beneglected relative
to unity. This is referred to as the ’rotating wave approximation’:

cos(ωot)e±iωot =
e±2iωot

2
+

1
2
≈

1
2

Using this transformation to a rotating frame and the rotating wave approximation, after a little algebra we
obtain the following differential equations for a(t) and b(t)):

∂ 2a(t)
∂ t2 +

ω2
1

4
a(t) = 0

b(t) =
2i
ω1

∂a(t)
∂ t

.

The equation fora(t) is a familiar second order differential equation, with solutions

a(t) = c1eiω1t/2 + c2e−iω1t/2

and hence

b(t) =−c1eiω1t/2 + c2e−iω1t/2.

The coefficientsc1 andc2 are determined by the initial coniditions. We may then obtain the general solution
for any initial conditionsα(0),β (0). Now we can construct the 2x2 matrix corresponding to the unitary
evolution operatorU(t) by solving first for the initial conditions i)α(0) = 1,β (0) = 0, and then ii) for the
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initial conditionsα(0) = 1,β (0) = 1. The solution to i) gives the first column ofU(t) and the solution to ii)
gives the second column ofU(t):

[

α(t)
β (t)

]

=

[

U11 U12

U21 U22

][

α(0)
β (0)

]

.

i) initial condition α(0) = 1,β (0) = 0 (this is
∣

∣+1/2
〉

=
∣

∣0
〉

≡ north pole on the Bloch sphere).

This corresponds toc1 = c2 = 1/2 and yields the following solution:
(

α(t)
β (t)

)

=

(

e−i ωo
2 tcosω1

2 t
−ie+i ωo

2 tsinω1
2 t

)

What does this mean geometrically? Let’s go to the Bloch sphere! Our generalized Bloch vector looks like:

∣

∣ψ
〉

= cos
θ
2

∣

∣0
〉

+ eiφ sin
θ
2

∣

∣1
〉

Our time-dependent state that is a solution to the Schr. equation looks like:

∣

∣ψ(t)
〉

= eiωot/2
(

cos
ω1t
2

∣

∣0
〉

+ ei(ωot−π/2)sin
ω1t
2

∣

∣1
〉

)

which apart from the global phase factor is of the same form asthe previous equation, with azimuthφ =
ωot−π/2. Therefore we can conclude that the qubit state is rotating(precessing) around ˆz at a rateωo.

What aboutθ? θ = ω1t, so the qubit state is simultaneously traveling down the sphere at a rateω1 = eB1
m at

the same time that it is much more rapidly precessing about ˆz at the fastωo, theLarmor frequency. We can
controlω1 very precisely by changing the amplitude of the weak fieldB1. Even thoughω0 is very large,ω1

can be very small, allowing a greater degree of control.Note: As spins flip out of ground state they suck
energy out of the “RF field” (B1cosωo). This is easily detected and forms the basis of NMR.

ii) initial condition α(0) = 0,β (0) = 1 (this is
∣

∣−1/2
〉

=
∣

∣1
〉

≡ south pole on the Bloch sphere).

This corresponds toc1 =−1/2,c2 = +1/2 and yields the following solution:
(

α(t)
β (t)

)

=

(

−ie−i ωo
2 tsinω1

2 t
e+i ωo

2 tcosω1
2 t.

)

Putting the solutions for the two initial conditions together, we obtain

U(t) = =

[

e−i ωo
2 tcosω1

2 t −ie−i ωo
2 tsinω1

2 t
−ie+i ωo

2 tsinω1
2 t e+i ωo

2 tcosω1
2 t

]

= e−iωot/2
[

cosω1
2 t −isinω1

2 t
−ie+i ωo tsinω1

2 t e+i ωo tcosω1
2 t

]

.

Now for ωot = 2π, eiωot = 1,eiωot/2 =−1, and we obtain

Uωot=2π = (−1)

[

cosω1
2 t −isinω1

2 t
−isinω1

2 t cosω1
2 t

]

.

Now recall from Homework 1, that a rotation around thex-axis corresponds to the operator

e−i γ
2X = (−1)

[

cos γ
2 −isin γ

2
−isin γ

2 cos γ
2

]

.
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So we have arrived at the gateUωot=2π = (−1)e−i γ
2X , where the angleγ = ω1t, i.e., we have a gate corre-

sponding to a rotation about thex-axis of the amountω1t.

We have already specified the productωot, but we still have one more parameter to play with, namelyω1.
Hence we can choose the value of this such thatω1t = π, to arrive at theX gate:

Uω0t=2π = (−1)(−i)

[

0 1
1 0

]

.

Note the global phase of +i. These phases must be kept track ofwhen gates are performed sequentially on
different qubits, i.e., when they are no longer ’global’ on the entire qubit array.

Thus an alternating magnetic field along thex-axis allows us to realize anX gate for a physical spin real-
ization of a qubit. Similarly, an alternating magnetic fieldalong they-axis allows us to realize aY gate.
Together, these allow any arbitrary unitary transformation to be made on a single qubit, i.e., any arbitrary
transformation on the Bloch sphere. Note that a rotation about thez-axis can now be made either by com-
bining x- andy-rotations, e.g., with

e−i φ
2 Z = e−i π

4Y ei φ
2 X ei π

4Y

or by a free Larmor precession for a finite time.

In principle, the fields should be switched off when the gate is achieved, if one wishes to preserve the final
state and not further time evolve it under the two fields. The weak alternating field is usually easy to switch
off, hence the term ’RF pulse’. The large static field is not soeasy to turn off and one has to then keep track
of the accumulated phase on the qubit resulting from furtherLarmor precession.

3 Two qubit gates for coupled spins
Electron and nuclear spins can interact directly via a dipolar coupling, or indirectly through chemical bonds
(electron density) connecting them in some structure. In liquids both of these can often be approximated by
the Ising-type interaction

Hint = JSz1Sz2.

whereJ measures the strength of the coupling. The Hamiltonian for two coupled spins is thenH = H1 +
H2 + Hint . Consider two spins A and B with possibly different Larmor frequenciesωA,ωB (due, e.g., to
different g factors, or for nuclear spins to different localmagnetic field strengths within a molecule). In the
Sz basis the Hamiltonian matrix is given by

H = −ωASzA−ωBSzB + JSzASzB

=
h̄
2









−ωA−ωB + Jh̄
2 0 0 0
0 −ωA + ωB−

Jh̄
2 0 0

0 0 ωA−ωB−
Jh̄
2 0

0 0 0 ωA + ωB + Jh̄
2









where the two-qubit basis states are ordered as usual as








00
01
10
11









.

C/CS/Phys 191, Fall 2005, Lecture 16 5



Figure 2: Energy levels of 2 spins coupled by Ising-like interaction

Now suppose, e.g., thatωA > ωB andJ > 0. Then the energy levels are of the form in Figure 2. There are4
possible single spin resonance transitions: their energies ∆ are

• ↑↑←→↑↓, ie., 00←→ 01

∆ =

[(

−ωA + ωB−
Jh̄
2

)

−

(

−ωA−ωB +
Jh̄
2

)]

h̄
2

= [2ωB− Jh̄]
h̄
2

=

(

ωB−
Jh̄
2

)

h̄

• ↑↑←→↓↑, ie., 00←→ 10

∆ =

[(

+ωA−ωB−
Jh̄
2

)

−

(

−ωA−ωB +
Jh̄
2

)]

h̄
2

= [2ωA− Jh̄]
h̄
2

=

(

ωA−
Jh̄
2

)

h̄

• ↑↓←→↓↓, ie., 01←→ 11

∆ =

[(

+ωA + ωB +
Jh̄
2

)

−

(

−ωA + ωB−
Jh̄
2

)]

h̄
2

= [2ωA + Jh̄]
h̄
2

=

(

ωA +
Jh̄
2

)

h̄

• ↓↑←→↓↓, ie., 10←→ 11

∆ =

[(

+ωA + ωB +
Jh̄
2

)

−

(

+ωA−ωB−
Jh̄
2

)]

h̄
2

= [2ωB + Jh̄]
h̄
2

=

(

ωB +
Jh̄
2

)

h̄
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The resulting spin resonance spectrum will look like Figure3. Then selectively exciting the spinB at
frequencyωB + Jh̄/2 will give the transition 10←→ 11 but will not affect spin A. This therefore gives us a
CNOT gate:

CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









In practice, frequency selective pulses require relatively long time to realize which has disadvantages (allow-
ing more bad interactions with the environment that can destroy the quantum coherence). Experimentalists
implementing quantum gates with nuclear spins usually prefer to work with shorter pulses that then possess
a broader ’bandwidth’, i.e., include many resonance frequencies and address mutliple transitions. See Stolze
and Suter, Ch. 10.2.5 for an example of how the CNOT gate can beachieved in this situation.

4 Refocusing spin interactions
The spin-spin interaction is always on. So how can we implement a single qubit gate in the presence of
coupling to the second qubit? In Homework 4 you showed that for spins interacting with an Ising coupling,
the effect of this coupling can be removed by conjugating with an X gate. Specifically, with

Hint = gσ (1)
z ⊗σ (2)

2 .

you showedX (2)U(t)X (2) = U−1(t), whereU(t) = e−iHIt and henceX (2)U(t)X (2)U(t) = 1. Thus if we have
the full two-qubit interaction,

H = aZ1 + bZ2 + Hint

and apply the above conjugation by an X gate on qubit 2, you will be left with the free spin precession of
qubit 1:

e−iHt/h̄X (2)e−iHt/h̄X (2) = e−ibZ1t/h̄.

Using another set of refocusing pulses on spin 2 can further remove this free spin precession of qubit 1. See
Stolze and Suter, Ch. 10.1.7, and/or Nielsen and Chuang, Ch.7.7.3.
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Figure 3: Spin resonance spectrum of two spins coupled by Ising interaction. Each single spin resonance
line ωi is split into two lines,ωi− Jh̄/2 andωi + Jh̄/2.
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