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| Readings

Liboff, Introductory Quantum Mechanics, Ch. 11

2 The Hamiltonian with spin

Previously we discussed the Hamiltonian in position regméstion. For a single particle, e.g., an electron,
this isHoy(x) = EY(x), with
FA)Z
Ho(X) = — +V(X).
o(X) = 5 +V(¥)
Now we expand the wave function to include spin, by consimigiti to be a function with two components,
one for each of th&, basis states in th&? spin state space.

[y

Note that the spatial part of the wave function is the sameth bpin components.

Now we can act on the spin-space wave function with either gperatorss; (or equivalently,S) or spatial
operators such ddy. Each of these acts only on the spin and space degrees obffineegspectively. Does
the spin variable%,) ever interact with the space variablgq Yes, of course, this is how we detected spin
originally - via the interaction of the spin angular moment8with a spatially varying magnetic field. For
an electron in an atom there is also another interactionsgireorbit interaction. The full Hamiltonian for
an electron with spin is of the form

|:H0+H1+H2+?%] Y(zS)=0

where
d’T - =l —
H = B (l +gs)
eh. =
Hy = (g—l)%Bim -S
eh\?1 /o 2
— 2(g-1)z <?n> = (l -s) .
H is the interaction of the spin angular momentum with an eeemagnetic field. We have added the

spin angular momentum to the orbital angular momentumvhich is a function of real space variables
(recalll =7 x p. H» is the interaction of the spin angular momentum with thermmdbmagnetic field. This

[EnY
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is the magnetic field in the rest frame of the electron thaeappwhen the electron moves in the electric
field of the nucleus, through a Lorentz transformation:

. 1 ExV

B = -
"o /1@

It is therefore a relativistic effect. Substitution of tHedric field E = ZeF/r® and hence the orbital angular
momentum ag x p leads to the expression of spin-orbit coupling, i.e., aerattion between the spin
angular momentur® and the orbital angular momentum

3 Two spins: addition of angular momenta

Consider two angular momenka andL,. Our treatment is general, and does not distinguish orbitat
spin angular momentum. We can make a composite ﬂl@,tbg, my, rr12> since the four operatol%, L%, L1,
and L, are mutually commuting. We refer to this as the 'uncouplgoresentation’. But we can also
measure the total angular momentum and its z—projecfi%ﬁ:, (El + Ez)z andL, = L, + L. Furthermore,
these two operators commute with andL, (check). So we can also form the sté@tem, Ly, L2> where
m = L,. We refer to this as the 'coupled representation.

Now the question is, what are the allowed valued. aind m? Well, the maximum value af must be
Mmax = Mimax + Mpmax = L1 + Lo. Hence the maximum allowed value lofis also equal td.; + L. ThisL
value will have 2 + 1 possiblem values associated with it.

What other states df are possible? We can use a state counting argument to find tbgether with
the requirement thdt change by integral values only. In the uncoupled repreentave have a total of
(2L;+1)(2L, + 1) states. On changing to the coupled representation we dnejabeling states and must
preserve the dimensionality of the space. So we must have

Li+Lo
Y (L+1)= (21 +1)(22+1).

Lmin

This is satisfied iLm, = |L1 — L2|. Hence our allowed values of total angular momentum arendiye

L = |Li—Lo[,|Li—Lo[+1,...,Li+L2
m = —L—L+1.. +L

Now lets evaluate this for 2 spins, e.g., 2 electroBis= S = 1/2. Hence the allowed values of total spin

areS=1,S=0. TheS=1 state has three values mf= —1,0,+1 associated with it and is called a spin
triplet. TheS= 0 state has one value of= 0 associated with it and is called a spin singlet.

4 Exchange (permutation) symmetry

Consider two electrons. Their total spin satisfies

S+8° = S+$+25S
3

_ YRr2 .
= Zﬁ+281 S.
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Now evaluateS; - S, in terms of the Pauli spin matrices, and act on the columnove${(S;;,S;) =
Y(+1/2,+1/2)
Y(+1/2,-1/2)
Y(-1/2,+1/2)
W(-1/2,-1/2)

mentum on the two spin wavefunction:

. Adding the constangﬁ2 allows one to obtain the action of the total angular mo-

20(+1/2,+1/2)
W(+1/2,-1/2) + ¢(-1/2,1/2)
Y(=1/2,1/2) + ¥(1/2,-1/2)
20(-1/2,-1/2)

S+ Sl = R

Comparing the form of this wave function with that ¢ifabove, we find that

» for S=1, we needp(+1/2,-1/2) = ¢(—1/2,1/2), i.e., P(Siz, Sz) = Y (S, S1z), the triplet spin
wave function is symmetric with respect to particle intenche

» for S=0, we needp(+1/2,-1/2) = ¢(—1/2,1/2) =0 andy(+1/2,+1/2) = ¢(—1/2,-1/2) =
0. These conditions are only satisfieq{;,S;) = —Y(Sz, S12), 1.€., the spin wave function is
antisymmetric with respect to particle interchange.

There is a fundamental restriction that indistinguishgtdeticles with half integer spin (fermions) have
total wavefunctions that are antisymmetric with respeqgbddicle interchange. Thus &= 1 spin wave
function must combine with an antisymmetric spatial wavection and ar5= 0 spin wave function with
a symmetric spatial wave function. This gives rise to theliRainciple, two fermions cannot exist in the
same quantum state. Since

Ya(r1,S1,12,9) = —yYa(r2,$,r1,S1),

if we setr; =r, andS;, S, then we arrive at

WA(rla S.|.7 i, Sl) = —‘PA(VL S.|.7 r, Sl)7

which is only satisfied bypa(ri,S1,r1,S1) = 0. So there is zero probability of finding the electrons at the
same location in space and with the same spin.

Is this important for qubits? NO! Generally it is not, since always assume we can address the qubits
individually and they are then no longer indistinguishab®o we don’t have to worry about the Pauli
principle for qubits although it is very important for eleas in atoms.

3] Unitary spin manipulation [: Larmor Precession

Turning on a magnetic fiel&, the qubit state rotates. There are two steps to undersgriis process,
essentially the same steps we make to understand any qupargess:

 FindH

» Solve Schrodinger equation

C/CS/Phys 191, Fall 2005, Lecture 15 3



For the second step, we first solve the “time-independenkir&@iinger equation; that is, we find energy
eigenstates A
H|wn> = En“l’n> .
The “time-dependent” Schrodinger equation
ing w(t) =H[yb)

then has solution .

iH

lp(t)) ="' pt=0)) .

Expanding|¢/(t =0)) = ¥nCq|n), we get

‘L/J(t)> _ che—iEnt/ﬁ|wn> )

(This assumes thai is time-independent. If the Hamiltonian is itself a funetiof t, H = H(t), then we
must directly solve the time-dependent Schrodinger éojuat

5.1 Find 2

for a spin in a B-field.
Assume there is only potential energy, not kinetic enerdgssically,E = —[i- B. Quantumly, the magnetic

-

moment is in fact a vectaperator, t = g—géz —%é Hence we set the quantum Hamiltonian to be

‘B .

0L

h—

e
m
We may choose our coordinate systenBse Bz, then

A -2

5.2 Solve Schrédinger Equation

Following the recipe we gave above, we start by finding thereigcomposition dfi. The eigenstates of
are just those o%;: |0) (up, m= +1/2) and|1) (down,m= —1/2). The corresponding eigenenergies are

Eo = £h, E1 = — R, respectively.

Next we solve the time-dependent Schrodinger equationsider

|w(t=0)) =al0) +B1) .

W) = ae*‘%\@ +Bei%|l>

0 alo)+Bem|L)

where the proportionality is up to a global phase (a convenigpresentation for the Bloch Sphere. On the
Bloch sphere, _
|t =0)) =cosf|0) +sinfe?|1)
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cos 5 |0} + ¥ sin 5| 1)

Figure 1:

thus evolves to )
‘l,U(t)> = C05g|0> —|—S|nge|(¢'+ﬁt)|l> '

Thus the state rotates counterclockwise aroundztires (counterclockwise when viewed from above), at
frequencyay = % (an is known as the cyclotron frequency, since it is the sameufragy with which a
classicale™ cycles in a magnetic field, due to the Lorentz force). Seergidu In timet, the azimuth has
changed by an amoudp = (eB/m)t.

.3 Rotations around zaxis

This provides us with a "quantum gatd®,, for rotating around the Bloch sphere at a given latitudemdet
A S ~
mined byf. R,(A¢) = e 7 isa unitary operation which rotates By about thez axis. (Proof:R,(A¢)
H R - R
is exactlye 'R for t = Ag /ap.) Being unitary meanB,(Ad)" = R,(Ad) 1 = R,(—A¢).

So aligningB with thez axis results in rotation of the spin about thexis. Each state is restricted to the line
of latitude it starts on, as illustrated above. For a moreegarotation about a different axis, simply point
the B field in a different direction. For example, the unitary agier

31|g),1)

Ay

Ra(8y) =€

rotates by\y about the axis."To achieve this unitary transformation, 8et Bf for exactly timet = Ay/ .

54 Rotations around ar]oitrary axis

Any unitary transformation on a single qubit, up to a globlage, is a rotation on the Bloch sphere about
some axis; mathematically, this is the well-known isomé@phSJ (2) / + 1 = SO(3) between < 2 unitary
matrices up to phase andk33 real rotation matrices. Hence Larmor precession, or sgation, allows us

to achieve any single qubit unitary gate. While theorelycsimple, Larmor precession can unfortunately be
inconvenient in real life, mostly because of the high fregies involved and the susceptibility to noise. A
more practical method for achieving rotations on the Blqutese is spin resonance, which we will describe
in the next lecture.
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