
C/CS/Phys 191 The Hamiltonian with spin, spin manipulation I (precession)10/18/05
Fall 2005 Lecture 15

1 Readings
Liboff, Introductory Quantum Mechanics, Ch. 11

2 The Hamiltonian with spin
Previously we discussed the Hamiltonian in position representation. For a single particle, e.g., an electron,
this isH0ψ(x) = Eψ(x), with

H0(x) =
p̂2

2m
+V (x).

Now we expand the wave function to include spin, by considering it to be a function with two components,
one for each of theSz basis states in theC 2 spin state space.

[

ψ(x,+1/2)
ψ(x,−1/2)

]

Note that the spatial part of the wave function is the same in both spin components.

Now we can act on the spin-space wave function with either spin operatorsσi (or equivalently,Si) or spatial
operators such asH0. Each of these acts only on the spin and space degrees of freedom, respectively. Does
the spin variable (Sz) ever interact with the space variable (x)? Yes, of course, this is how we detected spin
originally - via the interaction of the spin angular momentum~S with a spatially varying magnetic field. For
an electron in an atom there is also another interaction, thespin-orbit interaction. The full Hamiltonian for
an electron with spin is of the form

[

H0 + H1+ H2+
h̄
i

∂
∂ t

]

ψ(z,Sz) = 0

where

H1 =
eh̄
2m

~B ·
(

~l + g~S
)

H2 = (g−1)
eh̄
2m

~Bint ·~S

= 2(g−1)Z

(

eh̄
2m

)2 1
r3

(

~l ·~S
)

.

H1 is the interaction of the spin angular momentum with an external magnetic field~B. We have added the
spin angular momentum to the orbital angular momentum~l, which is a function of real space variables
(recall~l =~r×~p. H2 is the interaction of the spin angular momentum with the internal magnetic field. This
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is the magnetic field in the rest frame of the electron that appears when the electron moves in the electric
field of the nucleus, through a Lorentz transformation:

~Bint =
1
c

~E ×~v
√

1− v2/c2
.

It is therefore a relativistic effect. Substitution of the electric field~E = Ze~r/r3 and hence the orbital angular
momentum as~r ×~p leads to the expression of spin-orbit coupling, i.e., an interaction between the spin
angular momentum~S and the orbital angular momentum~l.

3 Two spins: addition of angular momenta
Consider two angular momenta~L1 and~L2. Our treatment is general, and does not distinguish orbitalfrom
spin angular momentum. We can make a composite state

∣

∣L1,L2,m1,m2
〉

since the four operatorsL2
1,L

2
2,L1z

and L2z are mutually commuting. We refer to this as the ’uncoupled representation’. But we can also
measure the total angular momentum and its z-projection,~L2 = (~L1+~L2)

2 andLz = Lz1+Lz2. Furthermore,
these two operators commute withL1 andL2 (check). So we can also form the state

∣

∣L,m,L1,L2
〉

where
m = Lz. We refer to this as the ’coupled representation.

Now the question is, what are the allowed values ofL and m? Well, the maximum value ofm must be
mmax = m1max + m2max = L1 + L2. Hence the maximum allowed value ofL is also equal toL1 + L2. This L
value will have 2L +1 possiblem values associated with it.

What other states ofL are possible? We can use a state counting argument to find them, together with
the requirement thatL change by integral values only. In the uncoupled representation we have a total of
(2L1 +1)(2L2 +1) states. On changing to the coupled representation we are just relabeling states and must
preserve the dimensionality of the space. So we must have

L1+L2

∑
Lmin

(2L +1) = (2L1 +1)(2L2 +1).

This is satisfied ifLmin = |L1−L2|. Hence our allowed values of total angular momentum are given by

L = |L1−L2|, |L1−L2|+1, ...,L1 + L2

m = −L,−L +1, ...,+L.

Now lets evaluate this for 2 spins, e.g., 2 electrons.S1 = S2 = 1/2. Hence the allowed values of total spin
areS = 1,S = 0. TheS = 1 state has three values ofm = −1,0,+1 associated with it and is called a spin
triplet. TheS = 0 state has one value ofm = 0 associated with it and is called a spin singlet.

4 Exchange (permutation) symmetry
Consider two electrons. Their total spin satisfies

|S1 + S2|
2 = S2

1 + S2
2 +2S1 ·S2

=
3
2

h̄2 +2S1 ·S2.
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Now evaluateS1 · S2 in terms of the Pauli spin matrices, and act on the column vector ψ(S1z,S2z) =








ψ(+1/2,+1/2)
ψ(+1/2,−1/2)
ψ(−1/2,+1/2)
ψ(−1/2,−1/2)









. Adding the constant32 h̄2 allows one to obtain the action of the total angular mo-

mentum on the two spin wavefunction:

|S1 + S2|
2ψ = h̄2









2ψ(+1/2,+1/2)
ψ(+1/2,−1/2)+ ψ(−1/2,1/2)

ψ(−1/2,1/2)+ ψ(1/2,−1/2)
2ψ(−1/2,−1/2)









.

Comparing the form of this wave function with that ofψ above, we find that

• for S = 1, we needψ(+1/2,−1/2) = ψ(−1/2,1/2), i.e., ψ(S1z,S2z) = ψ(S2z,S1z), the triplet spin
wave function is symmetric with respect to particle interchange

• for S = 0, we needψ(+1/2,−1/2) = ψ(−1/2,1/2) = 0 andψ(+1/2,+1/2) = ψ(−1/2,−1/2) =
0. These conditions are only satisfied ifψ(S1z,S2z) = −ψ(S2z,S1z), i.e., the spin wave function is
antisymmetric with respect to particle interchange.

There is a fundamental restriction that indistinguishableparticles with half integer spin (fermions) have
total wavefunctions that are antisymmetric with respect toparticle interchange. Thus anS = 1 spin wave
function must combine with an antisymmetric spatial wave function and anS = 0 spin wave function with
a symmetric spatial wave function. This gives rise to the Pauli principle, two fermions cannot exist in the
same quantum state. Since

ψA(r1,S1,r2,S2) = −ψA(r2,S2,r1,S1),

if we setr1 = r2 andS1,S2, then we arrive at

ψA(r1,S1,r1,S1) = −ψA(r1,S1,r1,S1),

which is only satisfied byψA(r1,S1,r1,S1) = 0. So there is zero probability of finding the electrons at the
same location in space and with the same spin.

Is this important for qubits? NO! Generally it is not, since we always assume we can address the qubits
individually and they are then no longer indistinguishable. So we don’t have to worry about the Pauli
principle for qubits although it is very important for electrons in atoms.

5 Unitary spin manipulation I: Larmor Precession
Turning on a magnetic field~B, the qubit state rotates. There are two steps to understanding this process,
essentially the same steps we make to understand any quantumprocess:

• Find Ĥ

• Solve Schrödinger equation
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For the second step, we first solve the “time-independent” Schrödinger equation; that is, we find energy
eigenstates

Ĥ
∣

∣ψn
〉

= En
∣

∣ψn
〉

.

The “time-dependent” Schrödinger equation

ih̄ d
dt

∣

∣ψ(t)
〉

= Ĥ
∣

∣ψ(t)
〉

then has solution
∣

∣ψ(t)
〉

= e−i Ĥ
h̄ t∣

∣ψ(t = 0)
〉

.

Expanding
∣

∣ψ(t = 0)
〉

= ∑n cn

∣

∣ψn
〉

, we get

∣

∣ψ(t)
〉

= ∑
n

cne−iEnt/h̄
∣

∣ψn
〉

.

(This assumes that̂H is time-independent. If the Hamiltonian is itself a function of t, Ĥ = Ĥ(t), then we
must directly solve the time-dependent Schrödinger equation.)

5.1 Find Ĥ

for a spin in a B-field.

Assume there is only potential energy, not kinetic energy. Classically,E =−~µ ·~B. Quantumly, the magnetic

moment is in fact a vectoroperator, ~̂µ = gq
2m

~̂S = − e
m
~̂S. Hence we set the quantum Hamiltonian to be

Ĥ = e
m
~̂S ·~B .

We may choose our coordinate system so~B = Bẑ; then

Ĥ = eB
m Ŝz .

5.2 Solve Schrödinger Equation
Following the recipe we gave above, we start by finding the eigendecomposition of̂H. The eigenstates of̂H
are just those of̂Sz:

∣

∣0
〉

(up, m = +1/2) and
∣

∣1
〉

(down,m = −1/2). The corresponding eigenenergies are
E0 = eB

2m h̄, E1 = − eB
2m h̄, respectively.

Next we solve the time-dependent Schrödinger equation. Consider

∣

∣ψ(t = 0)
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

.

Then

∣

∣ψ(t)
〉

= αe−i eB
2mt ∣

∣0
〉

+ βei eB
2mt ∣

∣1
〉

∝ α
∣

∣0
〉

+ βei eB
m t ∣

∣1
〉

,

where the proportionality is up to a global phase (a convenient representation for the Bloch Sphere. On the
Bloch sphere,

∣

∣ψ(t = 0)
〉

= cosθ
2

∣

∣0
〉

+sin θ
2eiϕ ∣

∣1
〉
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Figure 1:

thus evolves to
∣

∣ψ(t)
〉

= cosθ
2

∣

∣0
〉

+sin θ
2ei(ϕ+

eB
m t)∣

∣1
〉

.

Thus the state rotates counterclockwise around thez axis (counterclockwise when viewed from above), at
frequencyω0 ≡

eB
m (ω0 is known as the cyclotron frequency, since it is the same frequency with which a

classicale− cycles in a magnetic field, due to the Lorentz force). See Figure 1. In timet, the azimuth has
changed by an amount∆φ = (eB/m)t.

5.3 Rotations around z-axis
This provides us with a ”quantum gate”,R̂z, for rotating around the Bloch sphere at a given latitude deter-

mined byθ . R̂z(∆ϕ) = e−i
Ŝz
h̄ ∆ϕ is a unitary operation which rotates by∆ϕ about thez axis. (Proof:R̂z(∆ϕ)

is exactlye−i Ĥ
h̄ t for t = ∆ϕ/ω0.) Being unitary meanŝRz(∆ϕ)† = R̂z(∆ϕ)−1 = R̂z(−∆ϕ).

So aligning~B with thez axis results in rotation of the spin about thez axis. Each state is restricted to the line
of latitude it starts on, as illustrated above. For a more general rotation about a different axis, simply point
the~B field in a different direction. For example, the unitary operator

R̂n(∆γ) = e−i
~̂S·n̂
h̄ ∆γ

rotates by∆γ about the axis ˆn. To achieve this unitary transformation, set~B = Bn̂ for exactly timet = ∆γ/ω0.

5.4 Rotations around arbitrary axis
Any unitary transformation on a single qubit, up to a global phase, is a rotation on the Bloch sphere about
some axis; mathematically, this is the well-known isomorphism SU(2)/±1∼= SO(3) between 2×2 unitary
matrices up to phase and 3×3 real rotation matrices. Hence Larmor precession, or spin rotation, allows us
to achieve any single qubit unitary gate. While theoretically simple, Larmor precession can unfortunately be
inconvenient in real life, mostly because of the high frequencies involved and the susceptibility to noise. A
more practical method for achieving rotations on the Bloch sphere is spin resonance, which we will describe
in the next lecture.
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