
C/CS/Phys 191 Spin operators, spin measurement, spin initialization 10/13/05
Fall 2005 Lecture 14

1 Readings
Liboff, Introductory Quantum Mechanics, Ch. 11

2 Spin Operators

Last time:
∣

∣0
〉

=
∣

∣ ↑
〉

=
∣

∣+
1
2

〉

= state representing ang. mom. w/ z-comp. up

∣

∣1
〉

=
∣

∣ ↓
〉

=
∣

∣−
1
2

〉

= state representing ang. mom. w/ z-comp. down

These are the eigenvectors and eigenvalues of the spin for a spin-1
2 system, like an electron or proton:

∣

∣0
〉

and
∣

∣1
〉

are simultaneous eigenvectors ofS2 andSz.

S2
∣

∣0
〉

= h̄2s(s+1)
∣

∣0
〉

= h̄21
2
(
1
2

+1)
∣

∣0
〉

=
3
4

h̄2
∣

∣0
〉

S2
∣

∣1
〉

= h̄2s(s+1)
∣

∣1
〉

=
3
4

h̄2
∣

∣1
〉

Sz

∣

∣0
〉

= h̄m
∣

∣0
〉

=
1
2

h̄
∣

∣0
〉

,m = +
1
2

Sz

∣

∣1
〉

= h̄m
∣

∣1
〉

= −
1
2

h̄
∣

∣0
〉

,m = −
1
2

Results of measurements:

S2 → 3
4h̄2,Sz → + h̄

2,− h̄
2

SinceSz is a Hamiltonian operator,
∣

∣0
〉

and
∣

∣1
〉

form an orthonormal basis that spans the spin-1
2 space,

which is isomorphic toC 2.

So the most general spin12 state is
∣

∣Ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

=

(

α
β

)

.

Question: How do we represent the spin operators(S2,Sx,Sy,Sz) in the 2-d basis of theSz eigenstates
∣

∣0
〉

and
∣

∣1
〉

?

Answer: They are matrices. Since they act on a two-dimensional vectors space, they must be 2-d matrices.
We must calculate their matrix elements:

S2 =

(

s2
11 s2

12
s2
21 s2

22

)

,Sz =

(

sz11 sz12

sz21 sz22

)

,Sx =

(

sx11 sx12

sx21 sx22

)

, etc. (Sy)
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CalculateS2 matrix: We must sandwichS2 between all possible combinations of basis vectors. (This is the
usual way to construct a matrix!)

s2
11 =

〈

0
∣

∣S2
∣

∣0
〉

=
〈

0
∣

∣

3
4

h̄2
∣

∣0
〉

=
3
4

h̄2

s2
12 =

〈

0
∣

∣S2
∣

∣1
〉

=
〈

0
∣

∣

3
4

h̄2
∣

∣1
〉

= 0

s2
21 =

〈

1
∣

∣S2
∣

∣0
〉

=
〈

1
∣

∣

3
4

h̄2
∣

∣0
〉

= 0

s2
22 =

〈

1
∣

∣S2
∣

∣1
〉

=
〈

1
∣

∣

3
4

h̄2
∣

∣1
〉

=
3
4

h̄2

SoS2 = 3
4h̄2

(

1 0
0 1

)

Find theSz matrix:

s2
z11 =

〈

0
∣

∣Sz

∣

∣0
〉

=
〈

0
∣

∣ +
h̄
2

∣

∣0
〉

=
h̄
2

s2
z12 =

〈

0
∣

∣Sz
∣

∣1
〉

=
〈

0
∣

∣ −
h̄
2

∣

∣1
〉

= 0

s2
z21 =

〈

1
∣

∣Sz
∣

∣0
〉

=
〈

1
∣

∣ +
h̄
2

∣

∣0
〉

= 0

s2
z22 =

〈

1
∣

∣Sz
∣

∣1
〉

=
〈

1
∣

∣ −
h̄
2

∣

∣1
〉

= −
h̄
2

SoSz = h̄
2

(

1 0
0 −1

)

Find Sx matrix: This is more difficult

What isSx11 =
〈

0
∣

∣Sx
∣

∣0
〉

?
∣

∣0
〉

is not an eigenstate ofSz, so it’s not trivial.

Use raising and lowering operators:S± = Sx ± iSy

⇒ Sx = 1
2(S+ + S−),Sy = 1

2i(S+ −S−)

⇒ Sx11 =
〈

0
∣

∣

1
2(S+ + S−)

∣

∣0
〉

⇒ S+

∣

∣0
〉

= 0, since
∣

∣0
〉

is the highestSz state.

But what isS−
∣

∣0
〉

? SinceS− is the lowering operator, we know thatS−
∣

∣0
〉

∝
∣

∣1
〉

. That isS−
∣

∣0
〉

= A−

∣

∣1
〉

for some complex numberA− which we have yet to determine. Similarly,S+

∣

∣1
〉

= A+

∣

∣0
〉

.

Question: What isA−?

Answer:

A+ = h̄
√

s(s+1)−m(m +1)→ S+

∣

∣s,m
〉

= A+

∣

∣s,m +1
〉

A− = h̄
√

s(s+1)−m(m−1)→ S−
∣

∣s,m
〉

= A−

∣

∣s,m−1
〉

Proof: First note that|A−|
2 =

〈

s,m
∣

∣S+S−
∣

∣s,m
〉

.
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SinceS± = Sx ± iSy, whereSx, Sy are Hermitian,S†
+ = S−. HenceA+(s,m) = A−(s,m +1)∗. We are free to

choose a phase for the eigenstates; set it soA+ ≥ 0 (real and nonnegative). Now

〈

s,m
∣

∣S−S+

∣

∣s,m
〉

= (S†
−

∣

∣s,m
〉

)†S+

∣

∣s,m
〉

= (S+

∣

∣s,m
〉

)†S+

∣

∣s,m
〉

= A2
+

〈

s,m
∣

∣s,m
〉

= A2
+ .

Also,

S−S+ = (Sx − iSy)(Sx + iSy) = S2
x + S2

y + i[Sx,Sy]

= S2−S2
z − h̄Sz .

Therefore,

〈

s,m
∣

∣S−S+

∣

∣s,m
〉

=
〈

s,m
∣

∣ (S2−S2
z − h̄Sz)

∣

∣s,m
〉

= h̄2s(s+1)− (h̄m)2− h̄(h̄m)

= h̄2(s(s+1)−m(m +1)) ,

usingS2
∣

∣s,m
〉

= h̄2s(s+1)
∣

∣s,m
〉

andSz
∣

∣s,m
〉

= h̄m
∣

∣s,m
〉

. Thus

A+(s,m) = h̄
√

s(s+1)−m(m +1)

A−(s,m) = A+(s,m−1) = h̄
√

s(s+1)−m(m−1) .

Now we use these valuesA± to find the desired coefficients:

S+

∣

∣0
〉

= 0

S+

∣

∣1
〉

= h̄

√

1
2
(
1
2

+1)− (−
1
2
)(−

1
2

+1)
∣

∣0
〉

= h̄
∣

∣0
〉

S−
∣

∣0
〉

= h̄

√

1
2
(
1
2

+1)− (
1
2
)(

1
2
−1)

∣

∣1
〉

= h̄
∣

∣1
〉

S−
∣

∣1
〉

= 0

⇒ Sx11 = 1
2

〈

0
∣

∣ (S+ + S−)
∣

∣0
〉

= 1
2

〈

0
∣

∣ [S+

∣

∣0
〉

+ S−
∣

∣0
〉

]

Sx11 =
1
2

〈

0
∣

∣ [0+ h̄
∣

∣1
〉

] = 0

Sx12 =
〈

0
∣

∣

1
2
(S+ + S−)

∣

∣1
〉

=
1
2

〈

0
∣

∣ [h̄
∣

∣0
〉

+0] =
h̄
2

Sx21 =
〈

1
∣

∣

1
2
(S+ + S−)

∣

∣0
〉

=
1
2

〈

1
∣

∣ [0+ h̄
∣

∣1
〉

] =
h̄
2

Sx22 =
〈

1
∣

∣

1
2
(S+ + S−)

∣

∣1
〉

=
1
2

〈

1
∣

∣ [h̄
∣

∣0
〉

+0] = 0

SoSx = h̄
2

(

0 1
1 0

)
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Find Sy matrix: UseSy = 1
2i(S+ − S−). The proceed similarly to above forSx. Check it out yourself to see

that you understand the matrix and bra-ket mechanics.

Answer: Sy = h̄
2

(

0 −i
i 0

)

In summary, we define

σ0 =

(

1 0
0 1

)

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

Then,S2 = 3
4h̄2σ0, Sx = h̄

2σ1, Sy = h̄
2σ2, Sz = h̄

2σ3

σ0,σ1,σ2,σ3 are called the Pauli Spin Matrices. They are very important for understanding the behavior
of two-level systems. Note that we have already encounteredthese in our discussion of qubits, where they
correspond to the gatesX = σ1, Y = σ2, Z = σ3, I = σ0. In the next couple of lectures we shall frequently
interconvert, using

Sx =
h̄
2

X ,

Sy =
h̄
2

Y,

Sz =
h̄
2

Z.

3 Measuring Spin
We can measure the spin statem with a Stern-Gerlach device. This is simply a magnet set up togenerate a
particular inhomogeneous~B field. In the figure below, the field is strong near the N pole (below) and weaker
near the S pole (above). If thez-axis points upwards, then we have a negative field gradient in thez direction,
i.e.,∂B/∂ z < 0.

N

S~µ
up

∣

∣0
〉

down
∣

∣1
〉

When a particle with spin state
∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

is shot through the apparatus from the left, its spin-up
portion is deflected upward, and its spin-down portion downward. The particle’s spin becomes entangled
with its position! Placing detectors to intercept the outgoing paths therefore measures the particle’s spin.

Why does this work? We’ll give a semiclassical explanation –mixing the classical~F = m~a and the quantum
Hψ = Eψ – which is not really correct, but gives the correct intuition. [See Griffith’s § 4.4.2, pp. 162-164
for a more complete argument.] Now the potential energy due to the spin interacting with the field is

E = −~µ ·~B ,

so the associated force is
~Fspin = −~∇E =~∇(~µ ·~B) .
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At the center~B = B(z)ẑ, with ∂B
∂ z < 0, so~F = ~∇(µzB(z)) = µz

∂B
∂ z ẑ. The magnetic moment~µ is related to

spin~S by~µ = gq
2m

~S = − e
m
~S for an electron. Hence

~F = e
m |

∂B
∂ z |Szẑ ;

if the electron is spin up (Sz = +1/2), the force is upward, and if the electron is spin down (Sz = −1/2), the
force is downward.

4 Initialize a Spin Qubit
• How can we create a beam of qubits in the state

∣

∣ψ
〉

=
∣

∣0
〉

? Pass a beam of spin-1
2 particles with

randomly oriented spins through a Stern-Gerlach apparatusoriented along thez axis. Block the
downward-pointing beam, leaving the other beam of

∣

∣0
〉

qubits.

Note that wemeasure the spin when we intercept an outgoing beam – measurement process is proba-
bilistic and not unitary.

• How can we create a beam of qubits in the state
∣

∣ψ
〉

= α
∣

∣0
〉

+β
∣

∣1
〉

? First find the point on the Bloch
sphere corresponding to

∣

∣ψ
〉

. That is, write

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

= cosθ
2

∣

∣0
〉

+ eiϕ sin θ
2

∣

∣1
〉

(up to a phase), where
tanθ

2 = |β
α | eiϕ = β/|β |

α/|α | .

The polar coordinatesθ ,ϕ determine a unit vector ˆn = cosϕ sinθ x̂ + sinϕ sinθ ŷ + cosθ ẑ. Now just
point the Stern-Gerlach device in the corresponding direction on the Bloch sphere, and intercept one

of the two outgoing beams. That is, a Stern-Gerlach device pointed in direction ˆn measuresSn̂ = n̂ ·~̂S.

Some details for this. We need to find the eigenstates ofSn = ~S · n̂. First express this in cartesian
coordinates, using ˆn = sinθ cosφ x̂ + sinθ cosφ ŷ + cosθ ẑ, and the relationsSα = h̄/2α ,α = X ,Y,Z.
We thereby arrive at the 2x2 matrix representation ofSn in thez-basis:

Sn =
h̄
2

(

cosθ sinθe−iφ

sinθeiφ cosθ

)

,

Now diagonalize this to obtain eigenvalues±h̄/2 (why are you not surprised?) and eigenstates

∣

∣0
〉

n = cosθ
2

∣

∣0
〉

+ eiϕ sin θ
2

∣

∣1
〉

(sn = +
h̄
2
)

∣

∣1
〉

n = −e−iθ sin θ
2

∣

∣0
〉

+cosθ
2

∣

∣1
〉

(sn = −
h̄
2
).

The first eigenstate is the desired general state on the Blochsphere, so we just need to intercept the
positive spin eigenstate, i.e., upward deflected beam in theS-G frame.

• Can we use an S-G apparatus to implement a unitary (deterministic) transformation? No, since the
S-G apparatus makes a measurement and is not unitary. In other words, it collapses the wave function
to one component only. It is fine for initializing an arbitrary state, but to make a unitary transformation
we have to evolve the wave function according to a Hamiltonian Ĥ:

∣

∣ψ(t)
〉

= e−
i
h̄ Ĥt ∣

∣ψ(0)
〉

C/CS/Phys 191, Fall 2005, Lecture 14 5



This rotates the spin qubit wave function on the Bloch sphere. In the next lecture we will see how
to accomplish an arbitrary single-qubit unitary gate (a arbitrary rotation on the Bloch sphere) by two
different approaches, Larmor precession and spin resonance.
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