1 Readings

Liboff, Introductory Quantum Mechanics, Ch. 11

2 Spin Operators

$$
\begin{aligned}
\text { Last time: } & |0\rangle=|\uparrow\rangle=\left|+\frac{1}{2}\right\rangle=\text { state representing ang. mom. w/ z-comp. up } \\
& |1\rangle=|\downarrow\rangle=\left|-\frac{1}{2}\right\rangle=\text { state representing ang. mom. w/ z-comp. down }
\end{aligned}
$$

These are the eigenvectors and eigenvalues of the spin for a spin- $\frac{1}{2}$ system, like an electron or proton: $|0\rangle$ and $|1\rangle$ are simultaneous eigenvectors of S^{2} and S_{z}.

$$
\begin{aligned}
S^{2}|0\rangle & =\hbar^{2} s(s+1)|0\rangle=\hbar^{2} \frac{1}{2}\left(\frac{1}{2}+1\right)|0\rangle=\frac{3}{4} \hbar^{2}|0\rangle \\
S^{2}|1\rangle & =\hbar^{2} s(s+1)|1\rangle=\frac{3}{4} \hbar^{2}|1\rangle \\
S_{z}|0\rangle & =\hbar m|0\rangle=\frac{1}{2} \hbar|0\rangle, m=+\frac{1}{2} \\
S_{z}|1\rangle & =\hbar m|1\rangle=-\frac{1}{2} \hbar|0\rangle, m=-\frac{1}{2}
\end{aligned}
$$

Results of measurements:

$$
S^{2} \rightarrow \frac{3}{4} \hbar^{2}, S_{z} \rightarrow+\frac{\hbar}{2},-\frac{\hbar}{2}
$$

Since S_{z} is a Hamiltonian operator, $|0\rangle$ and $|1\rangle$ form an orthonormal basis that spans the spin- $\frac{1}{2}$ space, which is isomorphic to \mathscr{C}^{2}.
So the most general spin $\frac{1}{2}$ state is $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$.
Question: How do we represent the spin operators $\left(S^{2}, S_{x}, S_{y}, S_{z}\right)$ in the 2-d basis of the S_{z} eigenstates $|0\rangle$ and $|1\rangle$?
Answer: They are matrices. Since they act on a two-dimensional vectors space, they must be 2-d matrices. We must calculate their matrix elements:

$$
S^{2}=\left(\begin{array}{ll}
s_{11}^{2} & s_{12}^{2} \\
s_{21}^{2} & s_{22}^{2}
\end{array}\right), S_{z}=\left(\begin{array}{ll}
s_{z 11} & s_{z 12} \\
s_{z 21} & s_{z 22}
\end{array}\right), S_{x}=\left(\begin{array}{ll}
s_{x 11} & s_{x 12} \\
s_{x 21} & s_{x 22}
\end{array}\right), \text { etc. }\left(S_{y}\right)
$$

Calculate S^{2} matrix: We must sandwich S^{2} between all possible combinations of basis vectors. (This is the usual way to construct a matrix!)

$$
\begin{aligned}
& s_{11}^{2}=\langle 0| S^{2}|0\rangle=\langle 0| \frac{3}{4} \hbar^{2}|0\rangle=\frac{3}{4} \hbar^{2} \\
& s_{12}^{2}=\langle 0| S^{2}|1\rangle=\langle 0| \frac{3}{4} \hbar^{2}|1\rangle=0 \\
& s_{21}^{2}=\langle 1| S^{2}|0\rangle=\langle 1| \frac{3}{4} \hbar^{2}|0\rangle=0 \\
& s_{22}^{2}=\langle 1| S^{2}|1\rangle=\langle 1| \frac{3}{4} \hbar^{2}|1\rangle=\frac{3}{4} \hbar^{2}
\end{aligned}
$$

So $S^{2}=\frac{3}{4} \hbar^{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
Find the S_{z} matrix:

$$
\begin{aligned}
& s_{z 11}^{2}=\langle 0| S_{z}|0\rangle=\langle 0|+\frac{\hbar}{2}|0\rangle=\frac{\hbar}{2} \\
& s_{z 12}^{2}=\langle 0| S_{z}|1\rangle=\langle 0|-\frac{\hbar}{2}|1\rangle=0 \\
& s_{z 21}^{2}=\langle 1| S_{z}|0\rangle=\langle 1|+\frac{\hbar}{2}|0\rangle=0 \\
& s_{z 22}^{2}=\langle 1| S_{z}|1\rangle=\langle 1|-\frac{\hbar}{2}|1\rangle=-\frac{\hbar}{2}
\end{aligned}
$$

So $S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Find S_{x} matrix: This is more difficult
What is $S_{x 11}=\langle 0| S_{x}|0\rangle$? $|0\rangle$ is not an eigenstate of S_{z}, so it's not trivial.
Use raising and lowering operators: $S_{ \pm}=S_{x} \pm i S_{y}$
$\Rightarrow S_{x}=\frac{1}{2}\left(S_{+}+S_{-}\right), S_{y}=\frac{1}{2 i}\left(S_{+}-S_{-}\right)$
$\Rightarrow S_{x 11}=\langle 0| \frac{1}{2}\left(S_{+}+S_{-}\right)|0\rangle \Rightarrow S_{+}|0\rangle=0$, since $|0\rangle$ is the highest S_{z} state.
But what is $S_{-}|0\rangle$? Since S_{-}is the lowering operator, we know that $S_{-}|0\rangle \propto|1\rangle$. That is $S_{-}|0\rangle=A_{-}|1\rangle$ for some complex number A_{-}which we have yet to determine. Similarly, $S_{+}|1\rangle=A_{+}|0\rangle$.
Question: What is A_{-}?
Answer:

$$
\begin{aligned}
& A_{+}=\hbar \sqrt{s(s+1)-m(m+1)} \rightarrow S_{+}|s, m\rangle=A_{+}|s, m+1\rangle \\
& A_{-}=\hbar \sqrt{s(s+1)-m(m-1)} \rightarrow S_{-}|s, m\rangle=A_{-}|s, m-1\rangle
\end{aligned}
$$

Proof: First note that $\left|A_{-}\right|^{2}=\langle s, m| S_{+} S_{-}|s, m\rangle$.

Since $S_{ \pm}=S_{x} \pm i S_{y}$, where S_{x}, S_{y} are Hermitian, $S_{+}^{\dagger}=S_{-}$. Hence $A_{+}(s, m)=A_{-}(s, m+1)^{*}$. We are free to choose a phase for the eigenstates; set it so $A_{+} \geq 0$ (real and nonnegative). Now

$$
\begin{aligned}
\langle s, m| S_{-} S_{+}|s, m\rangle & =\left(S_{-}^{\dagger}|s, m\rangle\right)^{\dagger} S_{+}|s, m\rangle=\left(S_{+}|s, m\rangle\right)^{\dagger} S_{+}|s, m\rangle \\
& =A_{+}^{2}\langle s, m \mid s, m\rangle=A_{+}^{2} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
S_{-} S_{+} & =\left(S_{x}-i S_{y}\right)\left(S_{x}+i S_{y}\right)=S_{x}^{2}+S_{y}^{2}+i\left[S_{x}, S_{y}\right] \\
& =S^{2}-S_{z}^{2}-\hbar S_{z} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\langle s, m| S_{-} S_{+}|s, m\rangle & =\langle s, m|\left(S^{2}-S_{z}^{2}-\hbar S_{z}\right)|s, m\rangle \\
& =\hbar^{2} s(s+1)-(\hbar m)^{2}-\hbar(\hbar m) \\
& =\hbar^{2}(s(s+1)-m(m+1)),
\end{aligned}
$$

using $S^{2}|s, m\rangle=\hbar^{2} s(s+1)|s, m\rangle$ and $S_{z}|s, m\rangle=\hbar m|s, m\rangle$. Thus

$$
\begin{aligned}
& A_{+}(s, m)=\hbar \sqrt{s(s+1)-m(m+1)} \\
& A_{-}(s, m)=A_{+}(s, m-1)=\hbar \sqrt{s(s+1)-m(m-1)}
\end{aligned}
$$

Now we use these values $A_{ \pm}$to find the desired coefficients:

$$
\begin{aligned}
& S_{+}|0\rangle=0 \\
& S_{+}|1\rangle=\hbar \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+1\right)}|0\rangle=\hbar|0\rangle \\
& S_{-}|0\rangle=\hbar \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)|1\rangle}=\hbar|1\rangle \\
& S_{-}|1\rangle=0 \\
& \Rightarrow S_{x 11}=\frac{1}{2}\langle 0|\left(S_{+}+S_{-}\right)|0\rangle=\frac{1}{2}\langle 0|\left[S_{+}|0\rangle+S_{-}|0\rangle\right] \\
& S_{x 11}=\frac{1}{2}\langle 0|[0+\hbar|1\rangle]=0 \\
& S_{x 12}=\langle 0| \frac{1}{2}\left(S_{+}+S_{-}\right)|1\rangle=\frac{1}{2}\langle 0|[\hbar|0\rangle+0]=\frac{\hbar}{2} \\
& S_{x 21}=\langle 1| \frac{1}{2}\left(S_{+}+S_{-}\right)|0\rangle=\frac{1}{2}\langle 1|[0+\hbar|1\rangle]=\frac{\hbar}{2} \\
& S_{x 22}=\langle 1| \frac{1}{2}\left(S_{+}+S_{-}\right)|1\rangle=\frac{1}{2}\langle 1|[\hbar|0\rangle+0]=0
\end{aligned}
$$

So $S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Find S_{y} matrix: Use $S_{y}=\frac{1}{2 i}\left(S_{+}-S_{-}\right)$. The proceed similarly to above for S_{x}. Check it out yourself to see that you understand the matrix and bra-ket mechanics.
Answer: $S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
In summary, we define

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Then, $S^{2}=\frac{3}{4} \hbar^{2} \sigma_{0}, S_{x}=\frac{\hbar}{2} \sigma_{1}, S_{y}=\frac{\hbar}{2} \sigma_{2}, S_{z}=\frac{\hbar}{2} \sigma_{3}$
$\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}$ are called the Pauli Spin Matrices. They are very important for understanding the behavior of two-level systems. Note that we have already encountered these in our discussion of qubits, where they correspond to the gates $X=\sigma_{1}, Y=\sigma_{2}, Z=\sigma_{3}, I=\sigma_{0}$. In the next couple of lectures we shall frequently interconvert, using

$$
\begin{aligned}
S_{x} & =\frac{\hbar}{2} X, \\
S_{y} & =\frac{\hbar}{2} Y, \\
S_{z} & =\frac{\hbar}{2} Z .
\end{aligned}
$$

3 Measuring Spin

We can measure the spin state m with a Stern-Gerlach device. This is simply a magnet set up to generate a particular inhomogeneous \vec{B} field. In the figure below, the field is strong near the N pole (below) and weaker near the S pole (above). If the z-axis points upwards, then we have a negative field gradient in the z direction, i.e., $\partial B / \partial z<0$.

When a particle with spin state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is shot through the apparatus from the left, its spin-up portion is deflected upward, and its spin-down portion downward. The particle's spin becomes entangled with its position! Placing detectors to intercept the outgoing paths therefore measures the particle's spin.
Why does this work? We'll give a semiclassical explanation - mixing the classical $\vec{F}=m \vec{a}$ and the quantum $H \psi=E \psi$ - which is not really correct, but gives the correct intuition. [See Griffith's § 4.4.2, pp. 162-164 for a more complete argument.] Now the potential energy due to the spin interacting with the field is

$$
E=-\vec{\mu} \cdot \vec{B},
$$

so the associated force is

$$
\vec{F}_{\text {spin }}=-\vec{\nabla} E=\vec{\nabla}(\vec{\mu} \cdot \vec{B}) .
$$

At the center $\vec{B}=B(z) \hat{z}$, with $\frac{\partial B}{\partial z}<0$, so $\vec{F}=\vec{\nabla}\left(\mu_{z} B(z)\right)=\mu_{z} \frac{\partial B}{\partial z} \hat{z}$. The magnetic moment $\vec{\mu}$ is related to spin \vec{S} by $\vec{\mu}=\frac{g q}{2 m} \vec{S}=-\frac{e}{m} \vec{S}$ for an electron. Hence

$$
\vec{F}=\frac{e}{m}\left|\frac{\partial B}{\partial z}\right| S_{z} \hat{z}
$$

if the electron is spin up $\left(S_{z}=+1 / 2\right)$, the force is upward, and if the electron is spin down $\left(S_{z}=-1 / 2\right)$, the force is downward.

4 Initialize a Spin Qubit

- How can we create a beam of qubits in the state $|\psi\rangle=|0\rangle$? Pass a beam of spin- $\frac{1}{2}$ particles with randomly oriented spins through a Stern-Gerlach apparatus oriented along the z axis. Block the downward-pointing beam, leaving the other beam of $|0\rangle$ qubits.
Note that we measure the spin when we intercept an outgoing beam - measurement process is probabilistic and not unitary.
- How can we create a beam of qubits in the state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$? First find the point on the Bloch sphere corresponding to $|\psi\rangle$. That is, write

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

(up to a phase), where

$$
\tan \frac{\theta}{2}=\left|\frac{\beta}{\alpha}\right| \quad e^{i \varphi}=\frac{\beta /|\beta|}{\alpha /|\alpha|}
$$

The polar coordinates θ, φ determine a unit vector $\hat{n}=\cos \varphi \sin \theta \hat{x}+\sin \varphi \sin \theta \hat{y}+\cos \theta \hat{z}$. Now just point the Stern-Gerlach device in the corresponding direction on the Bloch sphere, and intercept one of the two outgoing beams. That is, a Stern-Gerlach device pointed in direction \hat{n} measures $S_{\hat{n}}=\hat{n} \cdot \hat{\vec{S}}$. Some details for this. We need to find the eigenstates of $S_{n}=\vec{S} \cdot \hat{n}$. First express this in cartesian coordinates, using $\hat{n}=\sin \theta \cos \phi \hat{x}+\sin \theta \cos \phi \hat{y}+\cos \theta \hat{z}$, and the relations $S_{\alpha}=\hbar / 2 \alpha, \alpha=X, Y, Z$. We thereby arrive at the 2×2 matrix representation of S_{n} in the z-basis:

$$
S_{n}=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \\
\sin \theta e^{i \phi} & \cos \theta
\end{array}\right)
$$

Now diagonalize this to obtain eigenvalues $\pm \hbar / 2$ (why are you not surprised?) and eigenstates

$$
\begin{aligned}
|0\rangle_{n} & =\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\left(s_{n}=+\frac{\hbar}{2}\right) \\
|1\rangle_{n} & =-e^{-i \theta} \sin \frac{\theta}{2}|0\rangle+\cos \frac{\theta}{2}|1\rangle \quad\left(s_{n}=-\frac{\hbar}{2}\right) .
\end{aligned}
$$

The first eigenstate is the desired general state on the Bloch sphere, so we just need to intercept the positive spin eigenstate, i.e., upward deflected beam in the S-G frame.

- Can we use an S-G apparatus to implement a unitary (deterministic) transformation? No, since the S-G apparatus makes a measurement and is not unitary. In other words, it collapses the wave function to one component only. It is fine for initializing an arbitrary state, but to make a unitary transformation we have to evolve the wave function according to a Hamiltonian \hat{H} :

$$
|\psi(t)\rangle=e^{-\frac{i}{\hbar} \hat{H} t}|\psi(0)\rangle
$$

This rotates the spin qubit wave function on the Bloch sphere. In the next lecture we will see how to accomplish an arbitrary single-qubit unitary gate (a arbitrary rotation on the Bloch sphere) by two different approaches, Larmor precession and spin resonance.

