
C/CS/Phys 191 Uncertainty principle, Spin Algebra 10/11/05
Fall 2005 Lecture 13

1 Readings
Uncertainty principle: Griffiths, Introduction to QM, Ch. 3.4.

Spin: Griffiths, Introduction to QM, Ch. 4.4; Liboff, Introductory Quantum Mechanics, Ch. 11

2 Heisenberg Uncertainty Principle
Question: Is it possible to construct a quantum state of well-defined position and momentum?

A relevant theorem to help answer the question:

Theorem: Consider two operatorsÂ andB̂ (representing two physical quantities). It is possible to construct
a simultaneous eigenstate,ψab, of both Â and B̂ iff [Â, B̂] = 0 where[Â, B̂] ≡ ÂB̂− B̂Â is the commutator
betweenÂ andB̂.

Proof: i) First, we show that if[Â, B̂] = 0, then simultaneous eigenstates exist. Suppose{φa} is a set of
non-degenerate eigenstates ofÂ ⇒ Âφa = aφa. Now considerB̂(Âφa) = a(B̂φa). But, B̂Â = ÂB̂ from the
commutator, sôA(B̂φa) = a(B̂φa). So we conclude thatψ = (B̂φa) is also an eigenstate ofÂ with eigenvalue
”a”. Now if these eigenstates are non-degenerate, thenψ must be a multiple ofφ , since there can only be
one eigenstate with eigenvaluea. Thereforeψ = B̂φa ∝ φa, i.e.,ψ = B̂φa = bφa, whereb is a constant. Thus
b is an eigenvalue of̂B. Thereforeφa is a simultaneous eigenstate ofÂ andB̂. ii) Now we show the converse.
If Â andB̂ have simultaneous eigenstates, they are diagonalized by the same transformation,T . Then

T T ABT = T T ATT T BT = A(D)B(D) = B(D)A(D) = T T BTT T AT = T T BAT

whence we haveAB = BA. So it the two operators have simultaneous eigenstates, they commute.

So, to answer the question of whether we can construct a stateof well-defined position AND momentum,
then we must see if[x̂, p̂] = 0 or not.

We will evaluate the commutator in the position representation, i.e., in the continuous basis|x > where ˆx = x
(meaning the position operator is justthe function x), We previously derived ˆp in this position representation
as

p̂ =
h̄
i

∂
∂x

.

Let’s first test this operator ˆp = h̄
i

∂
∂x on an test state:

p̂ψk(x) =
h̄
i

∂
∂x

(

eikx
)

= h̄keikx = pψk(x).

Now we can explicitly calculate the commutator in this basis:
[

x,
h̄
i

∂
∂x

]

=?
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Notice the commutator is itself an operator, in this case onethat is asking to operate on some function. Let’s
apply it to a test functionf (x) and see what happens:

[

x,
h̄
i

∂
∂x

]

f (x) =
h̄
i

(

x
∂
∂x

−
∂
∂x

x

)

f (x) =
h̄
i

(

x
∂ f
∂x

−
∂
∂x

(x f (x))

)

=
h̄
i

(

x
∂ f
∂x

− f (x)− x
∂ f
∂x

)

= ih̄ f (x)

We see that the test functionf (x) is irrelevant and we find

[x̂, p̂] = ih̄ 6= 0.

Therefore we can conclude that you cannot simultaneously know the position and momentum of a quantum
state with certainty. This is one statement of the Heisenberg Uncertainty Principle. This is often stated
quantitatively, as

∆x∆p ≥ h̄/2

where(∆A)2 is the variance of operatorA, i.e.,
〈

(A− < A >)2
〉

. Note that the variance is defined for a
particular state. Similar uncertainty relations hold between all pairs of non-commuting observables. In
your homework this week you prove the general quantitative form of the uncertainty relation between non-
commuting observablesA andB.

2.1 Uncertainty principle and two-slit experiment
The uncertainty principle is responsible for one of the basic features of the two-slit experiment, namely that
if one can observe an interference pattern, that one has no knowledge of which slit the particle went through,
while if one measures which slit was traversed, then one looses the interference pattern. Figure 1 shows such
a two-slit experiment for a beam of electrons incident from the left. The interference pattern is observed on
a scintillation screen on the right. Now suppose we put a source of photons after the slits which will interact
with the electrons and allow us to find out (’measure’) which slit each electron passed through. In order for
this information to be achieved, the position of each electron has to be measured withind/2, i.e.,

∆y ≪
d
2
.

Now if the interference pattern is to be maintained, then theuncertainty in electron momentum induced by
the interaction with a photon,∆py, must be very much less than a value that would displace the electron
from a maximum in the interference pattern to an adjacent minimum. This condition is readlily obtained
from trigonometric analysis in Figure 1, giving

∆py ≪
θ
2

px.

But we know from the de Broglie relation thatp = h/λ , and the angleθ at which the first interference
maximum occurs is given by the path length difference between the 2 slits, just like diffraction analysis (see
Figure 2). Thusλ = d sinθ ≃ dθ . Hence we have

∆py ≪ f rach2d
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Figure 1: Two-slit experiment

So now we have derived two inequalities that need to be satisfied if we can both determine which slit the
electrons passed throughand maintain an interference pattern. Combining these two inequalities leads to

∆y∆py ≪
h
4
.

Looks good?? NO - this is in direct contradiction to the Heisenberg uncertainty relation for position and mo-
mentum! (The numerical factor ofπ is not meaningful quantitatively, can be fixed by appropriate definition
of the uncertainty.) So we have to conclude that it is not possible to both measure which slit was traversed
and maintain the interference pattern.

3 Spin
3.1 Physical qubits
Now, after this foray into the world of wave mechanics, let’sget back to our discussion ofqubits (it is in
the title of the course, after all!). How can we make a qubit inreal life? We need a quantum mechanical
two-level system such that we can:

(1) Initialize the qubit.
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Figure 2: Diffraction - path length difference at first diffraction peak isλ = d sinθ

(2) Manipulate the qubit (think gates!)

(3) Measure the qubit.

There are many other important issues such as decoherence and entanglement, but we’ll mainly be focusing
on these first three.

Examples of some possible 2-level systems are spins, atoms,photons, superconducting loops. Over the
next few lectures we’ll be discussing how to physically prepare, measure, and manipulate real qubit systems
made from spins.

3.2 Recall what is spin?
Elementary particles and composite particles carry an intrinsic angular momentum called spin. For our pur-
poses, the most important particles are electrons and protons. They each contain a little angular momentum
vector that can point up| ↑> or down| ↓>. The quantum mechanical spin state of an electron or proton is
thus|ψ >= α | ↑> +β | ↓>. Therefore, spins can be used as qubits with| ↑>= |0 >, | ↓>= |1 >.

How do we understand the details of spin? We gave a brief overview of the history and role of classical
thinking in the development of spin in lecture 2. Please lookback at this before proceeding. The spin
angular momentum was shown there to be related to an intrinsic magnetic moment that accounted for an
aomalous splitting of energy levels of hydrogen atoms in a magnetic field. It is a relativistic effect that can
be derived from the Dirac Equation (Relativistic Schrodinger equation for spin-12 particles), but it holds for
electrons that are not moving fast.

The intrinsic angular momentum is called “spin” =~S, and it is related to the intrinsic magnetic moment by
~µ = − ge

2m
~S. Hereg (the g-factor) is a unitless factor. For electrons,g ≈ 2. For protons,g ≈ 5.6. You should

also note thatmproton

melectron
≈ 2000, so we conclude that ~µproton ≪ ~µelectron. Note that an electron with orbital

angular momentum gives rise to a magnetic moment~mu = − e
2m

~L, so the g-factor can be viewed as a kind of
correction factor due to quantum mechanics.
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To understand spin =~S we must first understand the QM properties of angular momentum. Classically,
angular momentum is~L =~r×~p = L̂xi + L̂ yj + L̂ zk wherei, j ,k are the usual cartesian unit vectors. To un-
derstand angular momentum in QM, we turn the classical observables intooperators and study the “algebra”
of~L =~r×~p in QM.

Again, and we can’t stress this enough, electron spin is not orbital angular momentum in the classical sense.
Experiments tell us, however, that we can take most general properties we derive for the QM operator
~L =~r×~p = L̂xi + L̂ yj + L̂ zk and we can simply apply them to the operator~S = ~Sxi + S̃yj + S̃zk. This is the
standard treatment.

Here are some properties that are straightforward to derivefor~L =~r× P̂, and will be applied here directly
to the operator~S. (We will skip the derivations, but they are done in standardtexts.)

There are really four important operators associated with spin: Ŝx, Ŝy, Ŝz, ~S2 = Ŝx
2
+ Ŝy

2
+ Ŝz

2
. All spin

properties are determined by the commutators between these operators (recall [Â, B̂] = ÂB̂− B̂Â):

[Ŝx, Ŝy] = ih̄Ŝz, [Ŝy, Ŝz] = ih̄Ŝx, [Ŝz, Ŝx] = ih̄Ŝy, [Ŝ
2, Ŝi] = 0

What are the implications of these commutation relations? First notice thatŜx, Ŝy, andŜz don’t commute
with each other. Following the results of the last lecture, we conclude that we cannot find a simultaneous
eigenstate of any pair of these quantities.

This is strange! We can’t know precise values ofŜx and Ŝy for any state. This is just like ˆp and x̂. Math-
ematically we can state this by saying that there is no state|sx,sy > such thatŜx|sx,sy >= sx|sx,sy > AND
Ŝy|sx,sy >= sy|sx,sy >.

However, notice that̂S2 commutes with any one component of~S. Therefore, wecan know the precise value
of ~S2 andŜi for a single component of~S. Following standard convention, let’s pickSi = Sz. So we can find
spin states|s,m > that are simultaneous eigenstates of~S2 andŜz.

Ŝ2|s,m >= as|s,m >, Ŝx|s,m >= bs|s,m >,as,bm = constants

Now our task is to understand spin eigenstates|s,m >. First, what are allowed values ofas, bm? These are
eigenvalues of operatorsS2 andSz representing observables.

Answer:

a can equal̄h2n(n + 1), wheren is an integer or half of an integer Given thata = h̄2n(n + 1),b can equal
h̄(−n), h̄(−n+1), . . . h̄(n−2), h̄(n−1), h̄n.

Now, let’s prove it.

First, we define the somewhat odd (at first glance) “raising” and “lowering” operatorsS+ and S−: S+ ≡
Sx + iSy, S− ≡ Sx − iSy

Let’s find the commutators of these operators:

[Sz,S+] = [Sz,Sx]+ i[Sz,Sy] = ih̄Sy + i(−ih̄Sx) = h̄(Sx + iSy) = h̄S+

Therefore[Sz,S+] = h̄S+. Similarly, [Sz,S−] = −h̄S−.

Now actS+ on
∣

∣a,b
〉

. Is the resulting state still an eigenvector ofS2? If so, does it have the same eigenvalues
a andb, or does it have new ones?

First, considerS2:

What isS2(S+

∣

∣a,b
〉

)? Since[S2,S+] = 0, theS2 eigenvalue is unchanged:S2(S+

∣

∣a,b
〉

) = S+(S2
∣

∣a,b
〉

) =
S+(a

∣

∣s,m
〉

) = a(S+

∣

∣a,b
〉

). The new state is also an eigenstate ofS2 with eigenvaluea.
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Now, considerSz:

What isSz(S+

∣

∣a,b
〉

)? Here,[Sz,S+] = h̄S+(6= 0). That is,SzS+−S+Sz = h̄S+. SoSzS+ = S+Sz + h̄S+, and:

Sz(S+

∣

∣a,b
〉

) = (S+Sz + h̄S+)
∣

∣a,b
〉

= (S+b+ h̄S+)
∣

∣a,b
〉

Sz(S+

∣

∣a,b
〉

) = (b+ h̄)S+

∣

∣a,b
〉

ThereforeS+

∣

∣a,b
〉

is an eigenstate ofSz. But S+ raises theSz eigenvalue of
∣

∣a,b
〉

by h̄ ! S+ changes the
state

∣

∣a,b
〉

to
∣

∣a,b+ h̄
〉

.

soS+ raises theSz eigenvalue of
∣

∣s,m
〉

by h̄ !

Similarly, Sz(S−
∣

∣s,m
〉

) = (b− h̄)(S−
∣

∣a,b
〉

) (Homework.) SoS− lowers the eigenvalue ofSz by h̄.

Now, remember that~S is an angular momentum.S2 represents the square of the magnitude of the angular
momentum; andSz represents the z-component.

But suppose you keep hitting
∣

∣s,m
〉

with S+. The eigenvalue ofS2 will not change, but the eigenvalue ofSz

keeps increasing. If we keep doing this enough, the eigenvalue ofSz will grow larger than the square root of
the eigenvalue ofS2. That is, the z-component of the angular momentum vector will in some sense be larger
than the magnitude of the angular momentum vector.

That doesn’t make a lot of sense . . . perhaps we made a mistake somewhere? Or a faulty assumption?
What unwarranted assumption did we make?

Here’s our mistake: we forgot about the null state 0, whichacts like an eigenvector of any operator, with any
eigenvalue. This is not the state

∣

∣0
〉

; it is a null state state, equal to 0. For instance, if we were dealing with
qubits, any ket could be represented as theα

∣

∣0
〉

+ β
∣

∣1
〉

. What state do you get if you set bothα andβ to
0? You get 0, which is not the same as

∣

∣0
〉

. In other words, you annihilate the ket.

Remember in our proof above when we concluded thatSz(S+

∣

∣a,b
〉

) = (b+ h̄)S+

∣

∣a,b
〉

? Well, if S+

∣

∣a,b
〉

=
0, then this would be true in a trivial way. That is,Sz ×0 = (b+ h̄)×0 = 0. But that doesn’t mean that we
have succesfully usedS+ to increase the eigenvalue ofSz by h̄. All we’ve done is annihilate our ket.

So the resolution to our dilemma must be that if you keep hitting
∣

∣a,b
〉

with S+, you must eventually
get 0. Let

∣

∣a,btop(a)
〉

be the last ket we get before we reach 0. (btop(a) is the ”top” value ofb that
we can reach, for this value ofa.) We expect thatbtop(a) is no bigger than the square root ofa. Then
Sz

∣

∣a,btop(a)
〉

= btop(a)
∣

∣a,btop(a)
〉

.

Similarly, there must exist a ”bottom” state
∣

∣a,bbot(a)
〉

, such thatS−
∣

∣a,bbot(a)
〉

= 0. AndSz
∣

∣a,bbot(a)
〉

=
bbot(a)

∣

∣a,bbot(a)
〉

.

Now consider the operatorS+S− = (Sx + iSy)(Sx − iSy). Multiplying out the terms and using the commuta-
tion relations, we get

S+S− = S2
x + S2

y − i(SxSy −SySx) = S2−S2
z + h̄Sz

Hence

S2 = S+S− + S2
z − h̄Sz (1)

Similarly

S2 = S−S+ + S2
z + h̄Sz (2)
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Now actS2 on
∣

∣a,btop(a)
〉

and
∣

∣a,bbot(a)
〉

:

S2
∣

∣a,btop(a)
〉

= (S−S+ + S2
z + h̄Sz)

∣

∣a,btop(a)
〉

= (0+ btop(a)2 + h̄btop(a))
∣

∣a,btop(a)
〉

S2
∣

∣a,btop(a)
〉

= btop(a)(btop(a)+ h̄)
∣

∣a,btop(a)
〉

Similarly,

S2
∣

∣a,bbot(a)
〉

= (S+S− + S2
z − h̄Sz)

∣

∣a,bbot(a)
〉

= (0+ bbot(a)2− h̄bbot(a))
∣

∣a,bbot(a)
〉

S2
∣

∣a,bbot(a)
〉

= h̄bbot(a)(bbot(a)− h̄)
∣

∣a,bbot(a)
〉

So the first ket hasS2 eigenvaluea = btop(a)(btop(a) + h̄), and the second ket hasS2 eigenvaluea =
h̄2bbot(a)(bbot(a)− h̄).

But we know that the action ofS+ andS− on
∣

∣a,b
〉

leaves the eigenvalue ofS2 unchanged. And we got from
∣

∣a,btop(a)
〉

to
∣

∣a,bbot(a)
〉

by applying the lowering operator many times. So the value ofa is the same for
the two kets.

Thereforebtop(a)(btop(a)+ h̄) = bbot(a)(bbot(a)− h̄).

This equation has two solutions:bbot(a) = btop(a)+ h̄, andbbot(a) = −btop(a).

But bbot(a) must be smaller thanbtop(a), so only the second solution works. Thereforebbot(a) = −btop(a).

Henceb, which is the eigenvalue ofSz, ranges from−btop(a) to btop(a). Furthermore, sinceS− lowers
this value byh̄ each time it is applied, these two values must differ by an integer multiple ofh̄. Therefore
btop(a)− (−btop(a)) = Nh̄ for someN. Sobtop(a) = N

2 h̄.

Hencebtop(a) is an integer or half integer multiple of̄h.

Now we’ll define two variables calleds andm, which will be very important in our notation later on.

Let’s defines ≡ btop(a)
h̄ . Thens = N

2 , sos can be any integer or half integer.

And let’s definem ≡ b
h̄ . Thenm ranges from−s to s. For instance, ifbtop(a) = 3

2h̄, thens = 3
2 andm can

equal−3
2,−

1
2, 1

2, or 3
2.

Then:

a = h̄2s(s+1)

b = h̄m

Sincea is completely determined bys, andb is completely determined bym, we can label our kets as
∣

∣s,m
〉

(instead of
∣

∣a,b
〉

) without any ambiguity. For instance, the ket
∣

∣s,m
〉

=
∣

∣2,1
〉

is the same as the ket
∣

∣a,b
〉

=
∣

∣6h̄2, h̄
〉

.

In fact, all physicists label spin kets withs andm, not witha andb. (The letterss andm are standard notation,
but a andb are not.) We will use the standard

∣

∣s,m
〉

notation from now on.

For each value ofs, there is a family of allowed values ofm, as we proved. Here they are:

Fact of Nature: Every fundamental particle has its own special value of “s” and can haveno other. “m” can
change, but “s” does not.
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If s is an integer, than the particle is a boson. (Like photons;s = 1)

If s is a half-integer, then the particle is a fermion. (like electrons,s = 1
2)

So, which spins is best for qubits? Spin12 sounds good, because it allows for two states:m = −1
2 and

m = 1
2.

The rest of this lecture will only concern spin-1
2 particles. (That is, particles for whichs = 1

2).

The two possible spin states
∣

∣s,m
〉

are then
∣

∣

1
2, 1

2

〉

and
∣

∣

1
2,−1

2

〉

.

Since thes quantum number doesn’t change, we only care aboutm = ±1
2.

Possible labels for the two states (m = ±1
2):

∣

∣

1
2, 1

2

〉 ∣

∣

1
2,−1

2

〉

∣

∣+
〉 ∣

∣−
〉

∣

∣0
〉 ∣

∣1
〉

All of these labels are frequently used, but let’s stick with
∣

∣0
〉

,
∣

∣1
〉

, since that’s the convention in this class.

Remember:
∣

∣0
〉

=
∣

∣ ↑
〉

= state representing ang. mom. w/ z-comp. up
∣

∣1
〉

=
∣

∣ ↓
〉

= state representing ang. mom. w/ z-comp. down

So we have derived the eigenvectors and eigenvalues of the spin for a spin-12 system, like an electron or
proton:
∣

∣0
〉

and
∣

∣1
〉

are simultaneous eigenvectors ofS2 andSz.

S2
∣

∣0
〉

= h̄2s(s+1)
∣

∣0
〉

= h̄21
2
(
1
2

+1)
∣

∣0
〉

=
3
4

h̄2
∣

∣0
〉

S2
∣

∣1
〉

= h̄2s(s+1)
∣

∣1
〉

=
3
4

h̄2
∣

∣1
〉

Sz
∣

∣0
〉

= h̄m
∣

∣0
〉

=
1
2

h̄
∣

∣0
〉

,m = +
1
2

Sz
∣

∣1
〉

= h̄m
∣

∣1
〉

= −
1
2

h̄
∣

∣0
〉

,m = −
1
2
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