C / CS / Pnys 191 Uncertainty principle, Spin A]ge]ora 10 / 11 / 05
Fall 2005 Lecture 13

| Readings

Uncertainty principle: Griffiths, Introduction to QM, Ch.43
Spin: Griffiths, Introduction to QM, Ch. 4.4; Liboff, Intredtory Quantum Mechanics, Ch. 11

2 Heisenberg Uncertainty Principle

Question: Is it possible to construct a quantum state of-defihed position and momentum?
A relevant theorem to help answer the question:

Theorem: Consider two operatdmndB (representmg two physical quantmes) It is possiblednstruct
a simultaneous eigenstat,, of both A andB iff [A B] = 0 where[A, B] = AB — BA is the commutator
betweenA andB.

Proof: i) First, we show that |fA B] = 0, then simultaneous eigenstates exist. Supggs¢ is a set of
non-degenerate elgenstatesﬁoﬁ Ag. = ag.. Now conS|de|B(Aqod) = a(Bg,). But, BA = AB from the
commutator, sé\(Bg,) = a(Bg). So we conclude thap = (Bg) is also an eigenstate &fwith eigenvalue
"a’. Now if these eigenstates are non-degenerate, themust be a multiple ofp, since there can only be
one eigenstate with eigenvalae Thereforey = Bg, 0 ¢, i.e., = Bg, = bg, wherebis a constant. Thus
bis an eigenvalue d8. Thereforeg, is a simultaneous eigenstatefoéndB. ii) Now we show the converse.
If A andB have simultaneous eigenstates, they are diagonalizecelsathe transformatiof,. Then

TTABT = TTATTTBT = APB(D) = BP)AD) — TTBTTTAT = TTBAT

whence we havAB = BA. So it the two operators have simultaneous eigenstatgsctmmute.

So, to answer the question of whether we can construct adtatell-defined position AND momentum,
then we must see [k, p] = 0 or not.

We will evaluate the commutator in the position represémai.e., in the continuous bagis> wherex= x
(meaning the position operator is jubke function x), We previously deriveg in this position representation

h

Let's first test this operatop = 51 on an test state:

() = 2 (d) = ke = py(x).

Now we can explicitly calculate the commutator in this basis

=

C/CS/Phys 191, Fall 2005, Lecture 13



Notice the commutator is itself an operator, in this casetbatis asking to operate on some function. Let’'s
apply it to a test functiorf (x) and see what happens:

{x, Tﬁ;—x} f(x) :?(x%—%x) f(x) = ?(x% —(%(xf(x))) = ?(x%— f(x)—x%) =ihf(x)

We see that the test functidr{x) is irrelevant and we find

%, p| = i 0.

Therefore we can conclude that you cannot simultaneousiwkhe position and momentum of a quantum
state with certainty. This is one statement of the Heisankbrcertainty Principle. This is often stated
guantitatively, as

AxAp > R/2

where (AA)? is the variance of operatdk, i.e., ((A— < A>)?). Note that the variance is defined for a
particular state. Similar uncertainty relations hold betw all pairs of non-commuting observables. In
your homework this week you prove the general quantitatwvenfof the uncertainty relation between non-
commuting observables andB.

2.1 Uncertainty principle and two-slit experiment

The uncertainty principle is responsible for one of the bé&satures of the two-slit experiment, namely that
if one can observe an interference pattern, that one hasaval&dge of which slit the particle went through,
while if one measures which slit was traversed, then onekot® interference pattern. Figure 1 shows such
a two-slit experiment for a beam of electrons incident fréw left. The interference pattern is observed on
a scintillation screen on the right. Now suppose we put acgof photons after the slits which will interact
with the electrons and allow us to find out ('measure’) whilihesich electron passed through. In order for
this information to be achieved, the position of each etectras to be measured withili 2, i.e.,

d
by < <.

Now if the interference pattern is to be maintained, thenutheertainty in electron momentum induced by
the interaction with a photorypy, must be very much less than a value that would displace dwtreh
from a maximum in the interference pattern to an adjacentrmim. This condition is readlily obtained
from trigonometric analysis in Figure 1, giving

0
Apy < > Px

But we know from the de Broglie relation that=h/A, and the anglé® at which the first interference
maximum occurs is given by the path length difference betvike 2 slits, just like diffraction analysis (see
Figure 2). Thus\ =dsin68 ~ d6. Hence we have

Apy < frach2d
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Figure 1: Two-slit experiment
So now we have derived two inequalities that need to be satiffwe can both determine which slit the
electrons passed throughd maintain an interference pattern. Combining these twouakiies leads to
h
AyApy < 7

Looks good?? NO - this is in direct contradiction to the Helsxg uncertainty relation for position and mo-
mentum! (The numerical factor afis not meaningful quantitatively, can be fixed by approgridefinition

of the uncertainty.) So we have to conclude that it is not iptesso both measure which slit was traversed
and maintain the interference pattern.

J Spin
3.1 Physical qu]oits

Now, after this foray into the world of wave mechanics, lef&t back to our discussion gbibits (it is in
the title of the course, after all!). How can we make a qubitgal life? We need a quantum mechanical
two-level system such that we can:

(1) Initialize the qubit.
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Figure 2: Diffraction - path length difference at first dé@tion peak i\ =dsinf

(2) Manipulate the qubit (think gates!)
(3) Measure the qubit.

There are many other important issues such as decoheretemt@mmglement, but we’ll mainly be focusing
on these first three.

Examples of some possible 2-level systems are spins, af@moesons, superconducting loops. Over the
next few lectures we’ll be discussing how to physically @nep measure, and manipulate real qubit systems
made from spins.

3.2 Recall what is spin?

Elementary particles and composite particles carry amsitr angular momentum called spin. For our pur-
poses, the most important particles are electrons andnwoflidiey each contain a little angular momentum
vector that can point up{> or down| | >. The quantum mechanical spin state of an electron or praton i
thus|y >= a| 1> +B| |>. Therefore, spins can be used as qubits With= [0 >, | |[>= |1 >.

How do we understand the details of spin? We gave a brief @awrof the history and role of classical
thinking in the development of spin in lecture 2. Please lbakk at this before proceeding. The spin
angular momentum was shown there to be related to an imtrimagnetic moment that accounted for an
aomalous splitting of energy levels of hydrogen atoms in gme#c field. It is a relativistic effect that can
be derived from the Dirac Equation (Relativistic Schro@ingquation for spir%— particles), but it holds for
electrons that are not moving fast.

The intrinsic angular momentum is called “spin"Srand it is related to the intrinsic magnetic moment by
b= —g—es Hereg (the g-factor) is a unitless factor. For electrogsy 2. For protonsg ~ 5.6. You should

m
also note tha% ~ 2000, so we conclude thatyoon < Heetron. Note that an electron with orbital

angular momentum gives rise to a magnetic mommiant —%E, so the g-factor can be viewed as a kind of
correction factor due to quantum mechanics.
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To understand spin S we must first understand the QM properties of angular momentGlassically,
angular momentum i = F x p = Lyi + I:yj + L,k wherei,j,k are the usual cartesian unit vectors. To un-
derstand angular momentum in QM, we turn the classical ghbkas intooperators and study the “algebra”
of L=Fx pin QM.

Again, and we can't stress this enough, electron spin is moitad angular momentum in the classical sense.
Experiments tell us, however, that we can take most geneoglepies we derive for the QM operator
L=rx p= L +Lyj+ Lk and we can simply apply them to the operefor Sii + Sj + S,k. This is the
standard treatment.

Here are some properties that are straightforward to désive = F x P, and will be applied here directly
to the operatof. (We will skip the derivations, but they are done in standaxds.)

There are really four important operators associated vp'th:s&, é/ § & = A@Z +AS;,2 JCS:’ZZ' All spin
properties are determined by the commutators between these operegoad [A, B] = AB — BA):
58] =R, (8,8] =S, S, S] = RS, [§,§5] =0

What are the implications of these commutation relations3t Rotice thatS,, SAy andS, don’t commute
with each other. Following the results of the last lecture,a@nclude that we cannot find a simultaneous
eigenstate of any pair of these quantities.

This is strange! We can’t know precise valuesSAQfandSAy for any state. This is just like pandX Math-
ematically we can state this by saying that there is no $$ats, > such thatS s, s, >= s,|s,,s, > AND

Slses >=5/s.s, >.

However, notice tha$? commutes with any one component®fTherefore, wean know the precise value
of  and§ for a single component @& Following standard convention, let’s pi&= S,. So we can find
spin stategs, m > that are simultaneous eigenstateSoands,.

&ls,m>= ag|s,m>,S|s,m >= bg|s,m >, a5, by, = constants

Now our task is to understand spin eigenstases >. First, what are allowed values af, b,,? These are
eigenvalues of operato® andS, representing observables.

Answer.

a can equah®n(n+ 1), wheren is an integer or half of an integer Given that= h°n(n+ 1),b can equal
A(—n),A(—n+1),...R(n— 2),A(n— 1), An.

Now, let’s prove it.

First, we define the somewhat odd (at first glance) “raisingd dowering” operatorsS, andS : S, =
S+iS,S. =515

Let's find the commutators of these operators:

S, St] =[S, S +i[S, S)] = iRS, +i(—iRS,) = A(S+iS)) = RS,

Therefore[S,,S;| = hS,. Similarly, [S,,S ] = —hS_.

Now actS, on |a, b> . Is the resulting state still an eigenvector3? If so, does it have the same eigenvalues
aandb, or does it have new ones?

First, consideS?:

What isS*(S; |a,b) )? Since[S,S,] =0, theS? eigenvalue is unchanged (S, |a,b)) = S, (F|a,b) ) =
S.(a|s;m)) = a(S; |a,b) ). The new state is also an eigenstat&Sowith eigenvaluea.
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Now, considelS;:

What isS,(S; |a, b))? Here,[S,,S,] = RS, (#0). Thatis,SS; — S, S =hS,. S0SS; =S, S +hS,, and:

S(S.Jab)) = (S, +FS)[ab)
— (S,b+hS,)[ab)
SZ(S-#‘avb>) = (b+ﬁ)s#‘avb>

ThereforeS, |a,b) isan eigenstate of,. ButS, raises thes; eigenvalue ofa,b) by Al S, changes the
state|a, b) to |a,b+h).

so0S, raises thes, eigenvalue ofs,m) by f!
Similarly, S,(S_|s,m)) = (b—h)(S_|a,b) ) (Homework.) S&_ lowers the eigenvalue &, by h.

Now, remember thab is an angular momentunt? represents the square of the magnitude of the angular
momentum; and, represents the z-component.

But suppose you keep hittidg, m> with S,.. The eigenvalue of* will not change, but the eigenvalue &f
keeps increasing. If we keep doing this enough, the eigeevalS, will grow larger than the square root of
the eigenvalue of?. That is, the z-component of the angular momentum vectéimslome sense be larger
than the magnitude of the angular momentum vector.

That doesn’'t make a lot of sense . . . perhaps we made a mistak@ndere? Or a faulty assumption?
What unwarranted assumption did we make?

Here’s our mistake: we forgot about the null state 0, wizictls like an eigenvector of any operator, with any
eigenvalue. This is not the std@ ; it is a null state state, equal to 0. For instance, if we weraidg with
qubits, any ket could be represented asdlﬁ@} + [3|1>. What state do you get if you set bathandf3 to
0? You get 0, which is not the same\@$. In other words, you annihilate the ket.

Remember in our proof above when we concluded 4@ |a,b) ) = (b+h)S; |a,b) ? Well, if S |a,b) =
0, then this would be true in a trivial way. That §,x 0= (b+ h) x 0= 0. But that doesn’t mean that we
have succesfully uses, to increase the eigenvalue 8fby h. All we've done is annihilate our ket.

So the resolution to our dilemma must be that if you keeprity't(a, b> with S;, you must eventually
get 0. Let|a, btop(a)> be the last ket we get before we reach @xofa) is the "top” value ofb that
we can reach, for this value @) We expect thabyp(a) is no bigger than the square root af Then
S|a,bop(@)) = brop(a)|@, brop(a)) -

Similarly, there must exist a "bottom” state, bys(a)) , such thaS_|a,byei(a)) = 0. And S;|a,byr(a)) =
bot(a)|a, bpot(a) ) -

Now consider the operat®@, S- = (S(+iS))(S—iS,). Multiplying out the terms and using the commuta-
tion relations, we get

S$S =S+$-i(S§-5S) =F-F+hs,

Hence

£=5S +$-hS, 1)
Similarly

=55 +2+hs (2)
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Now actS? on |a, biop(a)) and

g

a,bpot(a) ) :

abop(@) = (SSi+S+AS)|abop(@))
= (0+biop(@)®+ Pbrop(a)) |2, brop(a))
a,bwop(@)) = brop(a)(brop(a) +h)

g a, btop(a)>
Similarly,
g a,bpot(a))

abp(@) = (S:S +S-hS)
= (0+ bpot(@)? — Abyet(a)) |2, bpor(@) )

Sla,boor(@)) = Pbpor(@)(bpot(@) — )|, bhor(a))

So the first ket has? eigenvaluea = byp(a)(brop(a) + h), and the second ket h&® eigenvaluea =
Fbpot(@) (bror(@) — ).
But we know that the action &, andS_ on|a,b) leaves the eigenvalue 6f unchanged. And we got from

|a, btop(a)> to |a, bbot(a)> by applying the lowering operator many times. So the valuaisfthe same for
the two kets.

Thereforebiop(a) (bop(@) -+ h) = bot(a) (bpot(@) — ).
This equation has two solutionBygt(a) = biop(@) + h, andbper(a) = —brop(a).
But byot(a) must be smaller thaiyp(a), so only the second solution works. Therefbggi(a) = —biop(a).

Henceb, which is the eigenvalue o, ranges from—byp(a) to byp(a). Furthermore, sinc&._ lowers
this value byh each time it is applied, these two values must differ by aeget multiple ofh. Therefore
brop(@) — (—brop(a)) = NAfor someN. Sobygp(a) = Fh.

Hencebyp(a) is an integer or half integer multiple of
Now we'll define two variables calleslandm, which will be very important in our notation later on.

Let's defines= b‘Lﬁ@ Thens= % soscan be any integer or half integer.

And let's definem= 2. Thenmranges from-sto s. For instance, ibp(a) = 3h, thens= 3 andm can
equal—3,-3,2 or3.
Then:

a = h%s(s+1)
b = hm

Sincea is completely determined by, andb is completely determined by, we can label our kets as
|s,;m) (instead of|a, b)) without any ambiguity. For instance, the ketm) = |2,1) is the same as the ket
|a,b) = |6R?, ).

In fact, all physicists label spin kets witandm, not witha andb. (The lettersandmare standard notation,
buta andb are not.) We will use the standafsim) notation from now on.

For each value of, there is a family of allowed values af, as we proved. Here they are:

Fact of Nature Every fundamental particle has its own special valuesbfthd can haveno other. “m’ can
change, but$’ does not.
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If sis an integer, than the particle is a boson. (Like photeas;l)
If sis a half-integer, then the particle is a fermion. (like #lecs,s= %)

So, which spins is best for qubits? Spié sounds good, because it allows for two states= —% and

=1
m=5.

The rest of this lecture will only concern sp@particles. (That is, particles for which= %).
11 11
2:3) and|3,—3).

Since thes quantum number doesn’t change, we only care abouti%.

The two possible spin stat@ m> are then

Possible labels for the two states £ +3):

LY b
Y-S
o

All of these labels are frequently used, but let’s stick V\yﬂh, |1> , Since that’s the convention in this class.

Remember |0) =|1) = state representing ang. mom. w/ z-comp. up
|1) =| | ) = state representing ang. mom. w/ z-comp. down

So we have derived the eigenvectors and eigenvalues of thdaspa spin—% system, like an electron or
proton:

|0) and|1) are simultaneous eigenvectorsSfands,.

11 3
52‘0> = R’s(s+ 1)|0) :ﬁzé(§+1)‘o> — Zﬁ2‘0>
1) = Ws(s+1|1) = )

50) = ﬁm|o>:%ﬁ|o>,m:+%
S[1) = h_m|1>=—%ﬁ‘0>,m:—%
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