C/CS/Phys C191 Quantum Mechanics in a Nutshell I1 10/06/05
Fall 2005 Lecture 12

In this second of two review lectures on quantum mechanidspagsics we discuss the Hamiltonian oper-
ator, solution of the Schrodinger equation, and how to madienale atomic qubit from a particle-in-a-box
model of the hydrogen atom.

| Readings

Any elementary quantum mechanics text from the list, e.gffitBs, Introduction to QM, Chs. 1, 2, 3.

2 The Hamiltonian

What is the Hamiltonian operator? Classically, the Hamilia is the energy operatdf] = 2m +V( X).
Quantum mechanically, we would like to use either the pasitr momentum basis to represent the oper-
ator since then either or p will be diagonal, and consequently also any correspondimgtfons of these
operators that occur in the Hamiltonian. Thus in a positiepresentatiorV (x) is diagonal, while in a

momentum representatio%}rz»1 is diagonal. E.qg.,

\%

/dxdx’|x> (X|V[X)(X]
- /dxdx’|x>V(X)5(X—X/)<X‘

= /dx|x>V(x)<x|

We usually have a more complicated potential energy term Hiaetic term, so prefer to work in the
position representation - will illustrate with an examptgdaw. So, we need to exprep$/2min the position
representation. Let’s start with gettingy We expect that the time derivative ¢f) is related to classical
velocity v and hence to classical momentyrs= mv, which should in turn ben(f). So

¢
at & dt/w”’“p” dt/Xth

wherep(T,t) = |(1,t)|? andT is the three-dimensional coordinate in general. Now forranatized wave
function this is a probability density whose total integnals to be conserved in order to keep the particle
number constant. By Gauss’ theorem it has to therefore titradk satisfy the continuity equation

ap(T)
ot

+0-j(r)=0

where the current density(7) is given by

j(1) = 50 [ (MDw(1) - Oy (m) ¥

[EnY
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Now we can rewrite the time derivative p{x) in terms of the current density(7), evaluate the integral by
parts, and remove the boundary termg at o, to obtain

a(x> = %/xp(r,t)dr
= —/xD-j(r)dr
=~ [OGapdr [ jar

= /jxdT

Now using the definition of the current density and integigithy parts we arrive at

() =m0 = [w' @ Dp(dr

which leads to the definition of the momentum operator

oo

Hence the kinetic energy operator in the position represient is/? /2m2.,

So, what if we had used the momentum representation? Thekirigic energy would be simple, merely
the diagonal fornp?/2mand we would need to evaluatén the momentum representation. This is given by
x=ihd/dp. Now suppose we had some non-trivial potential energy, \é(g) = 1/cosh?(x). This happens.
Then the potential energy would be given\Wyp) = 1/cosh?(ihd/dp) which is really not something that
you want to deal with in your partial differential equatiasr the wave function!

3 The Schrodinger Equation and its Solutions

What isthe role of energy here? It is very intertwined with time dependence. Let's examiogh.

First, let's consider the Schrodinger equation for a fre#iga, V (x) = O:

0 A
IHEW(XJ) = —%WW(XJ) (1)

with m the particle’s mass arfd= --. Recall that Planck’s constant has a valu@ ef6.6 x 10~34J-s. This
is a very small quantity with respect to ordinary macroscdevels, and is the main reason why quantum
effects are not usually noticeable.

If we take this Schrodinger equation and plug in our trialiioh (x,t) = €KY we find that this trial

solution works provided thab(k) = ’;—'ﬁ This is known as the dispersion relation for a free partiblew,

notice that the most general solution is a linear supetlipositf such functions for many differektvalues:

Wixt) = [ diagloeikn (2)
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— ok \ 2m
%k. This is the "group velocity”. We can also quickly rearranfges to note thaimv = k. But what is 'hv’?
It's the momentump! Therefore we conclude thai = k. This is a relationship between the physical
momentum of a particle and the wave-vector of a wavefunctida can illuminate this further as follows:

h 21 h
== () (5) =3 &

This is known as the DeBroglie relation, and it actually mted the Schrodinger equation.

This superposition solution is known awave packet. The velocity of a wave packetis= %—‘Q’ g (hk2> =

Now we will consider how to solve the Schrodinger equatiorgémeral, when there is also a non-zero
potential energy ternV/ (x) (say, due to an electric field). If there is a potential energthe system, then
the Hamiltonian becomes:

h? 92
2max2
To be clear about the distinction between operators andifuns; we’ll denote quantum mechanical opera-
tors with "hats”, e.gH or .

H = KE4PE = — +V(X) (4)

The Schrodinger Equation

0 .
ih—W(xt) = Hy(x,t) (5)

defines the relationship between the energy of a system ghrd) and its time development. Can we
understand this relationship better?

First, we note that this is a partial differential equatiarich means that it is a differential equation with
more than one variable (x and t in this case). We now employnaiyhanath trick for partial differential
equations, and assume that the solution to the Schrodirgeatien can be written as the produtx,t) =
Y(X)@(t). This is calledseparation of variables. If we plug this into the Schr. Eqn. and divide both sides

by w(x)e(t) :

d_q) A

The left hand side (LHS) is a function of t, and the right haiié $RHS) is a function of x. Therefore, for
this solution to make sense for all possible x and t, bothssidest equal aonstant. What is that constant?
Why, energy, of course!

So, the Schr. egn. breaks into two equations, one in time@)oae in space (x):

space : H(x) = E(x) (7)
L 00(t)
time: ih——= = Eq(t) (8)
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This time equation is easy(t) = e 'EY/" — g(t) = e, w= E, or E = hw. (Planck-Einstein relation.)

The spatial equation is harder. It is called the "time-ireleent Schrodinger equation.” However difficult
to solve, this equation is a special type of equation knowanasgenval ue problem, where "operatox ("

= "constantx (.” Thus the Schr. eqn. reduces to an eigenvalue problem,hwas a storied history
in mathematics. To solve the Schr. eqn., one must find thefseaefunctions{y, (x)} that return to
themselves (times a constant) when acted ohl by Y (X) = E g, (). Each solutiony has an energf,
associated with it. The stat¢g), } and only they have well-defined energies. The enerffig$ are the set
of all physically allowed energies of the system.

The full time-dependent solution i(x,t) = Y(x)@(t) = Y (x)e B/ . Since these are linear equations we
can add solutions, just as above for the free particle caseth® most general solution to the Schrodinger
equation isp(xt) = 3, AP (x)e E/A,

This tells us the rule for time evolution in quantum mechani€ you want to know how a wave function
evolves in time then you just break it down into energy eiganfions and multiply each one by a time-
dependent phase factor whose frequency is proportionts emergy.

Example: Suppose at time t=0 we haygx) = A, (; (X) + A, Y, (X) + A;5(X) where (x) = E; ¢ (x). What
is Y(xt) fort #£07?

To solve this, we can just add in the phase factors:

Y(xt+#0) = Alwl(x)efiElt/h_|_A2w2(x)efiE2t/h+A3w3(x)efiE3t/h ©)

Let's do another example: For a free partitle= —zh—;a"—; — Y (x) = E, = % Therefore,y(x,t) =

. . BK2
kg%t as seen before.
In generalH (x) = Eg(x) can be a very difficult differential equation to solve. Phists and chemists
spend a great deal of time solving this equation!

Note that we have already derived this time evolution eadiben analyzing the unitary evolution of a
quantum statey(x,t # 0) = e "M/ (x t = 0), with e 'H/” the time evolution operator. Recall how we
approached it before:

Any (x,t = 0) can be writtenp(x,t = 0) = 5, A Y (X), so:

P(x,t#£0) = e—iﬁt/ﬁ (ZAkwk(x)> _ ZAke_im/ﬁwk(X) — ZAkwk(x)e_iEkt/ﬁ (10)

which is the same as above, singgXx) is an eigenfunction ofl with eigenvalueg, .

The time-independent Schr. eqn. sets a condition thatrdeies what the allowed energies of a system
are and what the states look like that have well-defined gn@weell-defined” means you'd get the same

answer if you measured the energy of all of the members ofemtiwhlly prepared ensemble of systems in
that state). However, we can also construct states thatweNlelefined values of other physical quantities,
like momentum, position, and angular momentum.

This is often called the basis of stationary states. Why?aBse ify = 4(x) whereI-AIL/Ji = Ky then
Pxt) = (x)e"'EY", The probability density(x,t) is then given by

C/CS/Phys C191, Fall 2005, Lecture 12 4



P(x) = w2 = (@ 09e ") (g (9e ) =g

Therefore the time dependence for the probability densitppled out and does not change in time.

But what does "well-defined” energy mean? It means two thilifjsA statey has well-defined energy if
Hy = Cy where "C” = energy of state. (2) A statg has well defined energy if an ensemble (read, many
cppies) of systems all prepared in the stitgive the same answer if you measure energy (i.e. E="C" if
Hy =EY).

So let's discuss measurement. | >= a; | > +a,|Pe > +ag|Pe. > +---, what is the result of a
measurement of energy? One of the postuiate of QMzis thatethgtrof the measurement must be an
eigenvalue ofd. @ will collapse onto one of these eigenstates with some piitityalVhat's the probability

of obtainingE,? Py = | < Y| > | = a3 And what isy after measurement( is projected tay,; upon an
observation oE;. So, measurement is a random collapse onto one of the etgs stiithe observable you
are measuring!

The same holds for momentum: If we are discussing momentum then it's best to work with reatam
eigenstates.

Pp = pYp = {Wp},{p}

Suppos€y >= b, |Yp, > +b,[Yp, > +bs|p, > +--- What is a result of a measurement of momentum?
We will end up measuring an eigenvalue of momentum with sorabgbility, and then collapse onto that
eigenstateR, = |b,|?).

The exact same thing happens for the observaklés étc. The eigenstates of these observables define
bases, and measurement of that observable randomly aslagonto one of those eigenstates.

Question: What if we take an ensemble of identically prepared staids@easure the same physical quantity
for each? How do we determine (theoretically) the averagieevaf the measurements? This will lead us to
the definition of arexpectation value.

Example: ENERGY. Suppose we know stafgs- }, {E}. If an ensemble is prepared iy >= |z > then
the situation is simplex E >= Eo. But what if we prepare an ensemble in a stgie> in a superposition
state which is not an eigenstateldf e.g. [ >=ay Y > +8,|Pg, > +a5|g, > +---? What is< E >
then?

< E >=E,Prob[E,] + E,Prob[E,] + E;Prob[E;] + - - -

whereProb[E] is just

ProblE;] = | < g [ > * = |a?

This yields:

< E >=|ay|?E; + |a,|’E, + |ag[*E5 + - --
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Our shorthand for this is given by:

<E>=<yH|y>

which is known as the expgctation value of the Hamiltoniare@uivalently of the energy). You can readily
show that this<c E >=< @/|H | > yields the proper expression.

We can do this foany observable! Consider arbitrarAy observaBleThe average value of this quantity for
ensemble of systems preparedgn> is < A>=< Y|A|Y >.

It should be noted that it is sometimes hard to evaluate theaation value. Take the continuous basis for
example [x >). Supposal(X) =< x| >= Ae. What is the average value of measured momentum for
an ensemble of systems?

< Pp>=<yY|ply >= /_0; Y (X) pY(x)dx = /0; (A*e”@) (?:-)() (Aefx2> dx=0

So, in this instance the expectation value is zero. It isdsftan exercise to evaluate p> > (symmetry
analysis will immediately tell you if it zero or not).

4 Particle-in-a-box model for atomic qubit

Let's do an example now! Let's consider a situation where ve@twto use the electrons inside atoms as
gubits. How do we describe the physical details of thesetsaMVhat are their allowed energies? How do
they change in timeWhat do we do??? We solve the Schr. equation, that’s what.

As is the case in most QM problems, we must find the Hamiltokiahl in this case is the energy operator
for an electron in an atom. To know this then we must make s@s@naptions about how electrons behave
in an atom.

Let's assume that atoms are very tiny 10~ 19 meter) 1-D boxes with very hard walls. The walls are located
at positionx = 0 andx = |. This model works surprisingly well. Inside the bbixis given by the free particle
HamiltonianH = —%g—;. Outside the box we model the very hard walls as regions wthergotential
energy V— co. This has the effect adisallowing any ( to be nonzero outside the box. If it did exist in this
region its energy (obtained, as always, by applying the Hanian) would also go to infinity. That’s too
much energy for our little electrons, so we can say that werastkrict our wavefunctiong/(x) to functions

which vanish ak < 0 andx > |.

W(x=0) = Y(x=1)=0

Strictly speaking, we mean thdt(x < 0) = ¢/(x > 1) = 0. We will see that this will allow us to construct
wavefunctions which are normalized over our restricteddmacex € {0,1}. The system as we've described
it can be sketched is sketched in Figure 2.

The first thing to note is that we've done this problem befofer a free particle we know that we have
solutionsyg (X) = Ae¥ 4+ Be ™ with energiesE, = % Are we done? No, because we need to impose
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our boundary condition that (x = 0) = ¢/(x=1) = 0 since those walls are hard and do not allow particles
to exist outside of the free particle box we've constructed.

Our previous solutiony (x) = Aé" + Be ™ is fine, but we can also write another general solution as
follows:

We (x) = Csin(kx) + D cogkx)

As we will see, this is a convenient choice. If we know imposeftrst boundary conditions:

WY (x=0) =0=Csink(x=0)] +Dcogk(x=0)] =C(0)+D(1) =D

SoD =0 and we can forget about the cosine solution. The seconddaoyicondition tells us:

Ye(x=1)=0=Csin(kl) =0

This is satisfied for alkl = nrt, wheren is an integer. Therefore, we hakg = %T which gives us our
guantized eigenfunction set. The energy eigenvalues are

£ h22 hPnPre
"Tom T 2mi2

with eigenfunctions

nrt

Yn(x) =Csin (I— )

Are we done? No, because we must normalize.

d | 2

2 22 (N7T
<Lpn\L/Jn>:/ |Un(X)|“dx=1= [ C&6in“(—x)dx=1=C=4/—

0 0 | I
V(x) - infinity V(x) - infinity
forx<0 forx>L
particle never here particle lives in here particle never here

wavefunction - 0 forx <0 wavefunction - 0 wavefunction — 0 forx < 0

V(x) - 0

Figure 1: Particle in a box
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So normalization has given us our proper set of energy aigetibns and eigenvalues:

2 . (@)’ n:FLZnZTIQ

Un(x) =/ psin{ X 2mi2
Higher energy states have more nodes. Some of the wavefnaaan be sketched as follows:

V(x) — infinity V(x) - infinity
forx <0 forx > L

A A

Figure 2: The first three eigenfunctions of the particle iro& system.

What does this have to do with the discrete quantum statarpiets described in the context of qubits? To
obtain a qubit from this system, we can construct our stahtasis|0 > and|1 > by just restricting our
state space to the bottom two eigenstates:

2 . R
0>=yy(x) = \/Ijsm (II—TX) Eno= >mi2

2. (2 4n?m?
|1>= ((x) = \/Ijsm <|—nx> JEnl1 = omZ

Physically this would mean forcing the total energy of thsten to be less thah,, meaning that the particle
could never have any overlap wit, for n > 2.

What about the energies of qubit states? Suppose | tekguliits prepared in staﬂ@} = (J; and measure
their energy and make a histogram. What does the histograkrile? See Figure 1(a).

Now suppose that | prepare eL@ubits in the superposition statll = \/g\0> + \/g|1> measureheir
energies, and make a histogram. How does it look? See Fidoye 1
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Ask yourself, isy/ a state with well-defined energyO. Why not? ¢/’ is not an eigenstate of the Hamilto-
nian operator. Let's check this:

. (/3 2 3 2
Hy =H (\/;Wfr \/%%) = \/;Elw1+ \/%Ezwz

Does this equal (constantfy’)? No, because as statég andE, are not equal. Thereforgy’ is not an
eigenstate of the energy operator and has no well-definadyertdowever it is a perfectly valid superposi-
tion state of the qubit.

This extremely simple model of a confined particle is aciuedlry useful physically, and pops up in many
real-world applications. In fact, the particle-in-a-boxodel provides one of the simplest meaningful de-
scriptions of an atom. In an atom the confined particle is aotedn and the box is created by the Coulomb
attraction between the negatively charged electron anghdlséively charged nucleus. Most atoms have
a lot of electrons, but all atoms behave (at some level) in anmathat is very similar to the simplest
atom which is hydrogen. Hydrogen has just one electron ihzles around one proton. Solving the exact
Schroedinger equation for the motion of an electron arouptbton involves some complexities that we
dont want to worry about right now, but suffice to say that thergy is determined most strongly by the
radial motion of electron. (i.e. the electrons radial dis@from the proton). The “radial Schroedinger
Equation of the electron then looks very much like the sinfpkaticle-in-a-box model that we have just
solved. The ground state and quantized excited states obdgd look like standing waves in much the
same way as the particle-in-a-box wave-functions. Hignergy states of hydrogen have more nodes just
like the particle-in-a-box states.

We can even make the analogy somewhat quantitative. Thalaatergy difference between the ground
state and first excited state of hydrogen is known taBg ~ 10 eV and the diameter of a hydrogen atom is
know to bel, ~ 1 Angstrom~ 10~1% meters = 1/10 nm. (i.e. the width of the hydrogen ground staiee
function). In the particle-in-a-box model that we just smythe energy difference between the ground state

(n=1) and first excited state (n\=2)M=,, g =E,—E; = 327?721’}2 We can then ask ourselves what is the size

counts counts

A A

108

600,000

E

400,000
E1 energy E

1 2 energy

Figure 3: Histograms of particle energy measurements.
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of a 1-d box that yields an energy difference between grotaie and first excited state that is the same as
the corresponding energy difference in hydrogen. Thissy éacalculate by settinE,, ; = AE,,. Then

we havc—:%’;2 =AE, andl = ,/%’}2. If we plug InAE,, = 10 eV, m=mass of electron, and the value for h,
then we find that I=3.4 Angstroms (do this calculation yolfys&his is only a factor of 3 different from the
width of an actual hydrogen atom! Thats pretty good. So, ifweee to trap an electron in a little 1-d box of
a length of | = 3.4 Angstroms then the energy difference bebtntbe N=1 and N=2 states would be exactly
the same as the energy difference between the first two stiatgdgrogen. We could then identify those two
states as qubit states 107 and 117 (like we did before). Atrampqubit superposition of the electron state
could then be written as

@) = al0) +B|1) = a\/l?sinnl—x+ﬁ\/l?sin2|—nx

The time evolution of this state at some later time t can bétewriby adding the energy dependent phase
factors:

l@(t)) = a0y e Et/hy B|1) e AR

This can be rearranged to become:

0(0) =" (a]0) + pr)e & 1)

One more round of rearrangement gives:

\t,u(t)> _ g 1Et/R (a\/l_isinnl_x + B\/I?sinzl_nx‘1> ei(EzEl)t/h>

The important point to notice here is that as time passesttiephase difference between the two qubit
states differs by a rate that is proportionali,,, the energy difference between them. For atomic systems
this is a pretty fast rate, sindsE,, = 10 eV corresponds to a frequencywof= % = 2.5x 10'® Hz. This

is very close to the frequency of optical light, and that isyvatomic qubits are controlled optically via
interaction with light pulses.

5 Other eigenbases

Now, the previous discussion was carried out in the "eneifggsis, by which we mean we sought the
eigenstates of the Hamiltonian and expressed our quanatessh that eigenbasis. This is, of course, very
convenient for describing the time development of the stits sometimes you might want to write a qubit

state in terms of the eigenstates of a different physicahtifya

For example, you might want to describe the wavefunctionaafryqubit in terms of basis states that have
well-defined position, or momentum, or angular momentunchis these bases can be found by solving
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a corresponding eigenvalue problem. In order to get thesdl-tefined” states you just have to know the
operators and solve the eigenvalue problem.

HOWEVER: While you can always construct an eigenstataephysical quantity, you might not be able to
construct a state that is a simultaneous eigenstate of tygqath quantities; i.e. a state that has well-defined
values for two observables.

Question: Is it possible to construct a stai , such thaix p(X) = XoUh p(X) AND Pl p(X) = P p(X)?
Such a state would have simultaneously well-defined pas(is) and momentump). we will answer this
in the next lecture.
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