
C/CS/Phys C191 Quantum Mechanics in a Nutshell II 10/06/05
Fall 2005 Lecture 12

In this second of two review lectures on quantum mechanics and physics we discuss the Hamiltonian oper-
ator, solution of the Schrodinger equation, and how to make asimple atomic qubit from a particle-in-a-box
model of the hydrogen atom.

1 Readings
Any elementary quantum mechanics text from the list, e.g., Griffiths, Introduction to QM, Chs. 1, 2, 3.

2 The Hamiltonian
What is the Hamiltonian operator? Classically, the Hamiltonian is the energy operator,H = p2

2m +V (x).
Quantum mechanically, we would like to use either the position or momentum basis to represent the oper-
ator since then eitherx or p will be diagonal, and consequently also any corresponding functions of these
operators that occur in the Hamiltonian. Thus in a position representationV (x) is diagonal, while in a

momentum representationp
2

2m is diagonal. E.g.,

V̂ =

∫

dxdx′
∣

∣x
〉〈

x
∣

∣V
∣

∣x′
〉〈

x′
∣

∣

=

∫

dxdx′
∣

∣x
〉

V (x)δ (x− x′)
〈

x
∣

∣

=

∫

dx
∣

∣x
〉

V (x)
〈

x
∣

∣

We usually have a more complicated potential energy term than kinetic term, so prefer to work in the
position representation - will illustrate with an example below. So, we need to express ˆp2/2m in the position
representation. Let’s start with getting ˆp. We expect that the time derivative of〈x̂〉 is related to classical
velocity v and hence to classical momentump = mv, which should in turn bem〈p̂〉. So

d
dt

〈x〉 =
d
dt

∫

ψ∗(τ , t)xψ(τ , t)dτ =
d
dt

∫

xρ(τ , t)dτ

whereρ(τ , t) = |ψ(τ , t)|2 andτ is the three-dimensional coordinate in general. Now for a normalized wave
function this is a probability density whose total integralhas to be conserved in order to keep the particle
number constant. By Gauss’ theorem it has to therefore at alltimes satisfy the continuity equation

∂ρ(τ)

∂ t
+ ∇ · j(τ) = 0

where the current densityj(τ) is given by

j(τ) =
~

2mi
∇ · [ψ∗(τ)∇ψ(τ)− (∇ψ∗(τ))ψ ] .
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Now we can rewrite the time derivative ofρ(x) in terms of the current densityj(τ), evaluate the integral by
parts, and remove the boundary terms atx → ∞, to obtain

d
dt

〈x〉 =
d
dt

∫

xρ(τ , t)dτ

= −

∫

x∇ · j(τ)dτ

= −

∫

∇ · ( j(τ)x)dτ +

∫

jxdτ

=

∫

jxdτ

Now using the definition of the current density and integrating by parts we arrive at

〈p〉 = m
d
dt

〈x〉 =

∫

ψ∗(τ)
~

i
∇ψ(τ)dτ

which leads to the definition of the momentum operator

p̂ =
~

i
∇.

Hence the kinetic energy operator in the position representation is~
2/2m∇2.

So, what if we had used the momentum representation? Then thekinetic energy would be simple, merely
the diagonal formp2/2m and we would need to evaluatex in the momentum representation. This is given by
x = i~d/d p. Now suppose we had some non-trivial potential energy, e.g., V (x) = 1/cosh2(x). This happens.
Then the potential energy would be given byV (p) = 1/cosh2(i~d/d p) which is really not something that
you want to deal with in your partial differential equation for the wave function!

3 The Schrodinger Equation and its Solutions
What is the role of energy here? It is very intertwined with time dependence. Let’s examine how...

First, let’s consider the Schrodinger equation for a free particle, V (x) = 0:

i~
∂
∂ t

ψ(x, t) = −
~

2

2m
∂ 2ψ
∂x2 ψ(x, t) (1)

with m the particle’s mass and~ = h
2π . Recall that Planck’s constant has a value ofh = 6.6×10−34J · s. This

is a very small quantity with respect to ordinary macroscopic levels, and is the main reason why quantum
effects are not usually noticeable.

If we take this Schrodinger equation and plug in our trial solution ψ(x, t) = ei(kx−ω(k)t), we find that this trial
solution works provided thatω(k) = ~k2

2m . This is known as the dispersion relation for a free particle. Now,
notice that the most general solution is a linear superposition of such functions for many differentk values:

ψ(x, t) =

∫

dkAkei(kx−ω(k)t) (2)
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This superposition solution is known as awave packet. The velocity of a wave packet isv = ∂ω
∂k = ∂

∂k

(

~k2

2m

)

=
~k
m . This is the ”group velocity”. We can also quickly rearrangethis to note thatmv = ~k. But what is ”mv”?
It’s the momentum,p! Therefore we conclude thatp = ~k. This is a relationship between the physical
momentum of a particle and the wave-vector of a wavefunction. We can illuminate this further as follows:

p = ~k =

(

h
2π

)(

2π
λ

)

=
h
λ

(3)

This is known as the DeBroglie relation, and it actually predates the Schrodinger equation.

Now we will consider how to solve the Schrodinger equation ingeneral, when there is also a non-zero
potential energy term,V (x) (say, due to an electric field). If there is a potential energyin the system, then
the Hamiltonian becomes:

Ĥ = KE + PE = −
~

2

2m
∂ 2

∂x2 +V (x) (4)

To be clear about the distinction between operators and functions, we’ll denote quantum mechanical opera-
tors with ”hats”, e.g.Ĥ or p̂.

The Schrodinger Equation

i~
∂
∂ t

ψ(x, t) = Ĥψ(x, t) (5)

defines the relationship between the energy of a system ( through Ĥ) and its time development. Can we
understand this relationship better?

First, we note that this is a partial differential equation,which means that it is a differential equation with
more than one variable (x and t in this case). We now employ a handy math trick for partial differential
equations, and assume that the solution to the Schrodinger Equation can be written as the productψ(x, t) =
ψ(x)φ(t). This is calledseparation of variables. If we plug this into the Schr. Eqn. and divide both sides
by ψ(x)φ(t) :

i~ψ(x)
∂
∂ t

φ(t) = φ(t)Ĥψ(x) → i~
∂φ
∂ t

φ(t)
=

Ĥψ(x)
ψ(x)

(6)

The left hand side (LHS) is a function of t, and the right hand side (RHS) is a function of x. Therefore, for
this solution to make sense for all possible x and t, both sides must equal aconstant. What is that constant?
Why, energy, of course!

So, the Schr. eqn. breaks into two equations, one in time (t) and one in space (x):

space : Ĥψ(x) = Eψ(x) (7)

time : i~
∂φ(t)

∂ t
= Eφ(t) (8)
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This time equation is easy:φ(t) = e−iEt/~ → φ(t) = e−iωt , ω = E
~

, or E = ~ω . (Planck-Einstein relation.)

The spatial equation is harder. It is called the ”time-independent Schrodinger equation.” However difficult
to solve, this equation is a special type of equation known asaneigenvalue problem, where ”operator×ψ”
= ”constant×ψ .” Thus the Schr. eqn. reduces to an eigenvalue problem, which has a storied history
in mathematics. To solve the Schr. eqn., one must find the set of wavefunctions{ψk(x)} that return to
themselves (times a constant) when acted on byĤ: Ĥψk(x) = Ekψk(x). Each solutionψk has an energyEk
associated with it. The states{ψk} and only they have well-defined energies. The energies{Ek} are the set
of all physically allowed energies of the system.

The full time-dependent solution isψ(x, t) = ψ(x)φ(t) = ψk(x)e
−iEkt/~. Since these are linear equations we

can add solutions, just as above for the free particle case. So, the most general solution to the Schrodinger
equation isψ(x, t) = ∑k Akψk(x)e

−iEkt/~.

This tells us the rule for time evolution in quantum mechanics: if you want to know how a wave function
evolves in time then you just break it down into energy eigenfunctions and multiply each one by a time-
dependent phase factor whose frequency is proportional to its energy.

Example: Suppose at time t=0 we haveψ(x) = A1ψ1(x)+A2ψ2(x)+A3ψ3(x) whereψ̂i(x) = Eiψi(x). What
is ψ(x, t) for t 6= 0?

To solve this, we can just add in the phase factors:

ψ(x, t 6= 0) = A1ψ1(x)e
−iE1t/~ + A2ψ2(x)e

−iE2t/~ + A3ψ3(x)e
−iE3t/~ (9)

Let’s do another example: For a free particleĤ = − ~
2

2m
∂ 2

∂x2 → ψk(x) = eikx,Ek = ~
2k2

2m . Therefore,ψ(x, t) =

eikxe−i ~k2
2m t as seen before.

In generalĤψ(x) = Eψ(x) can be a very difficult differential equation to solve. Physicists and chemists
spend a great deal of time solving this equation!

Note that we have already derived this time evolution earlier when analyzing the unitary evolution of a
quantum state:ψ(x, t 6= 0) = e−iĤt/~ψ(x, t = 0), with e−iĤt/~ the time evolution operator. Recall how we
approached it before:

Any ψ(x, t = 0) can be writtenψ(x, t = 0) = ∑k Akψk(x), so:

ψ(x, t 6= 0) = e−iĤt/~

(

∑
k

Akψk(x)

)

= ∑
k

Ake−iĤt/~ψk(x) = ∑
k

Akψk(x)e
−iEkt/~ (10)

which is the same as above, sinceψk(x) is an eigenfunction of̂H with eigenvalueEk.

The time-independent Schr. eqn. sets a condition that determines what the allowed energies of a system
are and what the states look like that have well-defined energy (”well-defined” means you’d get the same
answer if you measured the energy of all of the members of an identically prepared ensemble of systems in
that state). However, we can also construct states that havewell-defined values of other physical quantities,
like momentum, position, and angular momentum.

This is often called the basis of stationary states. Why? Because ifψ = ψi(x) whereĤψi = Eiψi then
ψ(x, t) = ψi(x)e

−iEit/~. The probability densityP(x, t) is then given by
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P(x, t) = |ψ(x, t)|2 =
(

ψi(x)e
−iEit/~

)∗(

ψi(x)e
−iEit/~

)

= |ψi(x)|
2

Therefore the time dependence for the probability density dropped out and does not change in time.

But what does ”well-defined” energy mean? It means two things: (1) A stateψ has well-defined energy if
Ĥψ = Cψ where ”C” = energy of state. (2) A stateψ has well defined energy if an ensemble (read, many
copies) of systems all prepared in the stateψ give the same answer if you measure energy (i.e. E = ”C” if
Ĥψ = Eψ).

So let’s discuss measurement. If|ψ >= a1|ψE1
> +a2|ψE2

> +a3|ψE3
> + · · · , what is the result of a

measurement of energy? One of the postulate of QM is that the result of the measurement must be an
eigenvalue ofĤ. ψ will collapse onto one of these eigenstates with some probability. What’s the probability
of obtainingE3? P3 = | < ψe|ψ > |2 = a2

3 And what isψ after measurement?ψ is projected toψ3 upon an
observation ofE3. So, measurement is a random collapse onto one of the eig. states of the observable you
are measuring!

The same holds for momentum: If we are discussing momentum then it’s best to work with momentum
eigenstates.

p̂ψp = pψp ⇒ {ψp},{p}

Suppose|ψ >= b1|ψp1
> +b2|ψp2

> +b3|ψp3
> + · · · What is a result of a measurement of momentum?

We will end up measuring an eigenvalue of momentum with some probability, and then collapse onto that
eigenstate (P2 = |b2|

2).

The exact same thing happens for the observables ˆx, L̂, etc. The eigenstates of these observables define
bases, and measurement of that observable randomly collapses us onto one of those eigenstates.

Question: What if we take an ensemble of identically prepared states and measure the same physical quantity
for each? How do we determine (theoretically) the average value of the measurements? This will lead us to
the definition of anexpectation value.

Example: ENERGY. Suppose we know states{ψE}, {E}. If an ensemble is prepared in|ψ >= |ψE > then
the situation is simple:< E >= E0. But what if we prepare an ensemble in a state|ψ > in a superposition
state which is not an eigenstate ofĤ, e.g. |ψ >= a1|ψE1

> +a2|ψE2
> +a3|ψE3

> + · · ·? What is< E >
then?

< E >= E1Prob[E1]+ E2Prob[E1]+ E3Prob[E3]+ · · ·

whereProb[Ei] is just

Prob[Ei] = | < ψEi
|ψ > |2 = |ai|

2

This yields:

< E >= |a1|
2E1+ |a2|

2E2+ |a3|
2E3 + · · ·
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Our shorthand for this is given by:

< E >=< ψ |Ĥ|ψ >

which is known as the expectation value of the Hamiltonian (or equivalently of the energy). You can readily
show that this< E >=< ψ |Ĥ|ψ > yields the proper expression.

We can do this forany observable! Consider arbitrary observableÂ. The average value of this quantity for
ensemble of systems prepared in|ψ > is < A >=< ψ |Â|ψ >.

It should be noted that it is sometimes hard to evaluate the expectation value. Take the continuous basis for
example (|x >). Supposeψ(x) =< x|ψ >= Ae−x2

. What is the average value of measured momentum for
an ensemble of systems?

< p̂ >=< ψ |p̂|ψ >=
∫ ∞

−∞
ψ∗(x)p̂ψ(x)dx =

∫ ∞

−∞

(

A∗e−x2
)

(

~

i
∂
∂x

)

(

Ae−x2
)

dx = 0

So, in this instance the expectation value is zero. It is leftas an exercise to evaluate< p2 > (symmetry
analysis will immediately tell you if it zero or not).

4 Particle-in-a-box model for atomic qubit
Let’s do an example now! Let’s consider a situation where we want to use the electrons inside atoms as
qubits. How do we describe the physical details of these qubits? What are their allowed energies? How do
they change in time?What do we do??? We solve the Schr. equation, that’s what.

As is the case in most QM problems, we must find the HamiltonianĤ. Ĥ in this case is the energy operator
for an electron in an atom. To know this then we must make some assumptions about how electrons behave
in an atom.

Let’s assume that atoms are very tiny (≈ 10−10 meter) 1-D boxes with very hard walls. The walls are located
at positionx = 0 andx = l. This model works surprisingly well. Inside the boxĤ is given by the free particle
HamiltonianĤ = − ~

2

2m
∂ 2

∂x2 . Outside the box we model the very hard walls as regions wherethe potential
energy V→ ∞. This has the effect ofdisallowing anyψ to be nonzero outside the box. If it did exist in this
region its energy (obtained, as always, by applying the Hamiltonian) would also go to infinity. That’s too
much energy for our little electrons, so we can say that we will restrict our wavefunctionsψ(x) to functions
which vanish atx ≤ 0 andx ≥ l.

ψ(x = 0) = ψ(x = l) = 0

Strictly speaking, we mean thatψ(x ≤ 0) = ψ(x ≥ l) = 0. We will see that this will allow us to construct
wavefunctions which are normalized over our restricted boxspacex∈ {0, l}. The system as we’ve described
it can be sketched is sketched in Figure 2.

The first thing to note is that we’ve done this problem before!For a free particle we know that we have
solutionsψE(x) = Aeikx + Be−ikx with energiesEk = ~

2k2

2m . Are we done? No, because we need to impose
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our boundary condition thatψ(x = 0) = ψ(x = l) = 0 since those walls are hard and do not allow particles
to exist outside of the free particle box we’ve constructed.

Our previous solutionψE(x) = Aeikx + Be−ikx is fine, but we can also write another general solution as
follows:

ψE(x) = C sin(kx)+ Dcos(kx)

As we will see, this is a convenient choice. If we know impose our first boundary conditions:

ψE(x = 0) = 0 = C sin[k(x = 0)]+Dcos[k(x = 0)] = C(0)+ D(1) = D

SoD = 0 and we can forget about the cosine solution. The second boundary condition tells us:

ψE(x = l) = 0 = C sin(kl) = 0

This is satisfied for allkl = nπ, wheren is an integer. Therefore, we havekn = nπ
l which gives us our

quantized eigenfunction set. The energy eigenvalues are

En =
~

2k2
n

2m
=

~
2n2π2

2ml2

with eigenfunctions

ψn(x) = Csin
(nπ

l
x
)

Are we done? No, because we must normalize.

< ψn|ψn >=

∫ l

0
|ψn(x)|

2dx = 1⇒

∫ l

0
C2sin2

(nπ
l

x
)

dx = 1⇒C =

√

2
l

x
x = 0 x = L

V(x) = 0

V(x) = infinity

for x < 0

V(x) = infinity

for x > L

particle lives in here

wavefunction = 0

particle never here

wavefunction = 0 for x < 0

particle never here

wavefunction = 0 for x < 0

Figure 1: Particle in a box
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So normalization has given us our proper set of energy eigenfunctions and eigenvalues:

ψn(x) =

√

2
l

sin
(nπ

l
x
)

,En =
~

2n2π2

2ml2

Higher energy states have more nodes. Some of the wavefunctions can be sketched as follows:

x
x = 0 x = L

V(x) = infinity

for x < 0

V(x) = infinity

for x > L

n=1

nn==22

n=3

Figure 2: The first three eigenfunctions of the particle in a box system.

What does this have to do with the discrete quantum state picture as described in the context of qubits? To
obtain a qubit from this system, we can construct our standard basis|0 > and |1 > by just restricting our
state space to the bottom two eigenstates:

|0 >= ψ1(x) =

√

2
l

sin
(π

l
x
)

,En=0 =
~

2π2

2ml2

|1 >= ψ2(x) =

√

2
l

sin

(

2π
l

x

)

,En=1 =
4~

2π2

2ml2

Physically this would mean forcing the total energy of the system to be less thanE2, meaning that the particle
could never have any overlap withψn for n ≥ 2.

What about the energies of qubit states? Suppose I take 106 qubits prepared in state
∣

∣0
〉

= ψ1 and measure
their energy and make a histogram. What does the histogram look like? See Figure 1(a).

Now suppose that I prepare 106 qubits in the superposition stateψ ′ =
√

3
5

∣

∣0
〉

+
√

2
5

∣

∣1
〉

, measuretheir
energies, and make a histogram. How does it look? See Figure 1(b)
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Ask yourself, isψ ′ a state with well-defined energy?NO. Why not?ψ ′ is not an eigenstate of the Hamilto-
nian operator. Let’s check this:

Ĥψ ′ = Ĥ

(

√

3
5

ψ1 +

√

2
5

ψ2

)

=

√

3
5

E1ψ1 +

√

2
5

E2ψ2

Does this equal (constant)×(ψ ′)? No, because as statedE1 andE2 are not equal. Thereforeψ ′ is not an
eigenstate of the energy operator and has no well-defined energy. However it is a perfectly valid superposi-
tion state of the qubit.

This extremely simple model of a confined particle is actually very useful physically, and pops up in many
real-world applications. In fact, the particle-in-a-box model provides one of the simplest meaningful de-
scriptions of an atom. In an atom the confined particle is an electron and the box is created by the Coulomb
attraction between the negatively charged electron and thepositively charged nucleus. Most atoms have
a lot of electrons, but all atoms behave (at some level) in a manner that is very similar to the simplest
atom which is hydrogen. Hydrogen has just one electron that circles around one proton. Solving the exact
Schroedinger equation for the motion of an electron around aproton involves some complexities that we
dont want to worry about right now, but suffice to say that the energy is determined most strongly by the
radial motion of electron. (i.e. the electrons radial distance from the proton). The “radial Schroedinger
Equation of the electron then looks very much like the simple“particle-in-a-box model that we have just
solved. The ground state and quantized excited states of hydrogen look like standing waves in much the
same way as the particle-in-a-box wave-functions. Higher energy states of hydrogen have more nodes just
like the particle-in-a-box states.

We can even make the analogy somewhat quantitative. The actual energy difference between the ground
state and first excited state of hydrogen is known to be∆EH ≈ 10 eV and the diameter of a hydrogen atom is
know to beLH ≈ 1 Angstrom≈ 10−10 meters = 1/10 nm. (i.e. the width of the hydrogen ground statewave
function). In the particle-in-a-box model that we just solved, the energy difference between the ground state
(n=1) and first excited state (n=2) is∆EP.I.B. = E2−E1 = 3~

2π2

2ml2 . We can then ask ourselves what is the size

counts

energyE1

106

counts

energyE1

600,000

E2

400,000

(a) (b)

Figure 3: Histograms of particle energy measurements.
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of a 1-d box that yields an energy difference between ground state and first excited state that is the same as
the corresponding energy difference in hydrogen. This is easy to calculate by setting∆EP.I.B. = ∆EH . Then

we have3~
2π2

2ml2 = ∆EH andl =
√

3~2π2

2ml2 . If we plug in∆EH = 10 eV, m=mass of electron, and the value for h,
then we find that l=3.4 Angstroms (do this calculation yourself). This is only a factor of 3 different from the
width of an actual hydrogen atom! Thats pretty good. So, if wewere to trap an electron in a little 1-d box of
a length of l = 3.4 Angstroms then the energy difference between the N=1 and N=2 states would be exactly
the same as the energy difference between the first two statesof hydrogen. We could then identify those two
states as qubit states 107 and 117 (like we did before). An arbitrary qubit superposition of the electron state
could then be written as

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

= α
√

2
l

sin
πx
l

+ β
√

2
l

sin
2πx

l

The time evolution of this state at some later time t can be written by adding the energy dependent phase
factors:

∣

∣ψ(t)
〉

= α
∣

∣0
〉

e−1E1t/~ + β
∣

∣1
〉

e−iE2t/~

This can be rearranged to become:

∣

∣ψ(t)
〉

= e−1E1t/~

(

α
∣

∣0
〉

+ β
∣

∣1
〉

e−i(E2−E1)t/~

)

One more round of rearrangement gives:

∣

∣ψ(t)
〉

= e−1E1t/~

(

α
√

2
l

sin
πx
l

+ β
√

2
l

sin
2πx

l

∣

∣1
〉

e−i(E2−E1)t/~

)

The important point to notice here is that as time passes thenthe phase difference between the two qubit
states differs by a rate that is proportional to∆EH , the energy difference between them. For atomic systems

this is a pretty fast rate, since∆EH = 10 eV corresponds to a frequency ofν =
∆EH

h = 2.5×1015 Hz. This
is very close to the frequency of optical light, and that is why atomic qubits are controlled optically via
interaction with light pulses.

5 Other eigenbases
Now, the previous discussion was carried out in the ”energy”basis, by which we mean we sought the
eigenstates of the Hamiltonian and expressed our quantum states in that eigenbasis. This is, of course, very
convenient for describing the time development of the state. But sometimes you might want to write a qubit
state in terms of the eigenstates of a different physical quantity.

For example, you might want to describe the wavefunction of your qubit in terms of basis states that have
well-defined position, or momentum, or angular momentum. Each of these bases can be found by solving
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a corresponding eigenvalue problem. In order to get these ”well-defined” states you just have to know the
operators and solve the eigenvalue problem.

HOWEVER: While you can always construct an eigenstate ofone physical quantity, you might not be able to
construct a state that is a simultaneous eigenstate of two physical quantities; i.e. a state that has well-defined
values for two observables.

Question: Is it possible to construct a stateψx,p such that ˆxψx,p(x) = xoψx,p(x) AND p̂ψx,p(x) = pψx,p(x)?
Such a state would have simultaneously well-defined position (xo) and momentum (p). we will answer this
in the next lecture.
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