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Fall 2005 Lecture 11

In this and the next lecture we summarize the essential gdlyand mathematical aspects of quantum
mechanics relevant to this course. Topics in this set ofsadanck-Einstein, postulates, operators, repre-
sentations.

Planck-Einstein Relation E = hv

This is the equation relating energy to frequency. It wassdriest equation of quantum mechanics, imply-
ing that energy comes in multiples (“quanta”) of a fundamkobnstant. It is written as either

E=hv

E =hw

whereh = h/2m. v is linear frequency and is angular frequency. The fundamental constait called
Planck’s constant and is equal to 6.626080 34 Js fi = 1.05457x 1034 Js, or 105457x 1027 erg s).

This relation was first proposed by Planck in 1900 to explaaproperties of black body radiation. The
interpretation was that matter energy levels are quantizédhe time this appeared compatible with the
notion that matter is composed of particles that oscillaibe discovery that the energy of electrons in
atoms is given by discrete levels also fitted well with thenBlarelation. In 1905 Einstein proposed that the
same equation should hold also for photons, in his explanati the photoelectric effect. The light incident
on a metal plate gives rise to a current of electrons only wherfrequency of the light is greater than a
certain value. This value is associated with the energyiredio remove an electron from the metal (the
“work function”). The electron is ejected only when the liginergy matches the discrete electron binding
energy. Einstein’s proposal that the light energy is quatijust like the electron energy was more radical
at the time: light quantization was harder for people to pttean quantization of energy levels of matter
particles. (The word “photon” for these quantized packétgbt energy came later, given by G. N. Lewis,
of Lewis Hall!)

1 Fundamental physical postulates

Why do quantum state evolve in time according to this padicaperator, and what is the meaning of this
operator? To answer this we have to look at quantum mech&oicsa more physical perspective. The
physical basis of quantum mechanics rests on three fundahymstulates. These are given below in the
wording of K. Gottfried and T. M. Yan (Quantum Mechanics: Bamental, Springer 2003).

|. States, superposition The most complete description of thmte of any physical syster8 at any time is
provided by some vectqlv> in the Hilbert spacéd appropriate to the system. Every linear combination of
such state vectoﬂ;w} represents a possible physical stat&of

This last sentence is ttseperposition principle that we have been using from the very beginning. Note the
difference between a quantum and a classical descripti@enpbiysical system. A classical description is
complete with specification of the positions and momentallgiaticles, each of which can be precisely
measured at any time. In contrast, the quantum descripgispdcified by the wave functqu—'> that lives
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in an abstract Hilbert space that has no direct connectiadhdaghysical world. Classical mechanics is
deterministic - particle positions and momenta can be fipddior all times using the classical equations of
motion. In contrast, quantum mechanics provides a stlgtirediction of the outcomes of all observables
on the system as the wave functibﬁ} evolves. Both descriptions are “complete” but they difierthe
information that can be obtained. The uncertainty prircifpindamentally changes the relation between
coordinates and momenta in quantum mechanics.

I1. Observables The physically meaningful entities of classical mecharsogh as positiorng(or x), momen-
tum (p), etc. are represented by Hermitian operators. Followirgd)we refer to these as “observables”.
We generalize these today to any physical meaningful esfitie., including those observables that have no
classical correspondence (e.g., intrinsic spin).

I11. Probabilistic interpretation and Measurement A set ofN replicas of a quantum systeSdescribed
by a state{ lP} when subjected to measurements for a physical obsersahlell yield in each measure-
ment one of the eigenvalugsy,ay,...} of A and asN — o this eigenvalue will appear with probability

Py(a1), Pu(az), ... where
Py(a) = [(ai| W)[?
and |a> is the eigenvector corresponding to the eigenvalue

This is precisely the definition of probability in terms ofegjific outcomes in a sequence of identical tests
on copies ofS, provided that

> Pu(@) =3 (] W)= (¥]¥) =1

This is automatically satisfied for states that are norredlio unity.
The expectation value of an observaBlen an arbitrary stat¢q—'> also looks like an average over a proba-
bility distribution:
A = (YAW)
= Y (Ya)a(alw)
|
= Y ahu(a).
|

Note that if the stat& is an eigenstate @4, then
(WAW) =4
wherea; is the corresponding eigenvalue, i.e., only a single terntrimites.

We can generalize this procedure from projection onto aige®s to projection onto an arbitrary st,é@.
Thus, the probability to find a quantum syst&that is in statgW) in another stat¢yp) is equal to

Py(0) =[(q| |¥)[*

This projection of the keth> onto another state, be it an eigenfunction of some opelfa@)r a basis
function for the Hilbert spacb/i> , Or an arbitrary statﬁp> , is referred to as a “probability amplitude”, since
its square modulus is a probability. Note that the probgbdmplitude is specified both b\)}cl—'> and the
other state: the latter specifies the “representatiod%f which realizes the quantum state in a measurable
basis. The probability amplitude is also referred to as tii@/& function” in the specified “representation”.
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A single measurement of th observable A on a sta‘éﬂ in the basis (representation) of eigenstateé\ of
will yield the valuea;, with probability Py(a;) = \<a5| W)|2. This defines the measurement operator

Mi =lai) (ail
that acts on the stajél—'> . The normalized state after measurement is then easilytedmnequal to
Mi[ )
VM)
For a measurement in the;) basis this is given by

IR

(W[ MIM[w)

where we have abbreviated
@) =1i)-

For example, suppose we have the linear superposition
(W) = a1|1) +a2|2) +a3|3) +... + k).

Making a single measurement of the observabtn |LIJ> will result in the outcomey; with probability
Py(a) = |aif®

and the resulting state after the measurement is equal to

(%)

The measurement of the observable has “collapsed” the $tteo a single eigenstatg) = |a;) of A
(recall these constitute an orthonormal basis).

2 Operators

In an earlier lecture we defined the operaos |v)(v| which projects an arbitrary state onto the state
For an orthonormal basi§ j)} we can define the set of projection operatBys= |j)(j| which obey the
so-called “completeness relatiog®_; P = 3 |j)(j| = 1.

A linear operator maps states (kets) onto linear combinatf other states (kets). Suppose a |ketis
mapped to a kefa): the operator for this is denoted by the outer prodagth|. So the action of linear
operators can easily be written in our bra-ket language, e.g

X|g) = [a){bly)
Yig) = lofdly)
XY|g) = [a)(blc){d|y).

C/CS/Phys 191, Fall 2005, Lecture 11 3



If one these kets is a superposition of states, @@= a|0) + B|1), then the resulting state is also a super-
position, i.e.,

X|@) = ((blg)a)|0) + ((bl¢) B)|1)-

So the bra-ket notation is naturally suited to the lineaurebdf quantum mechanical operators.

The inner product in the center of the last equatioAn is a nundgeeclearly the “product’XY is also an
operator. We often denote operators by the notakonNote that thAerrder of these operators matters:
applyingXY to |¢) results in a state proportional fa), while applyingY X results in a state proportional to
C).

Now lets consider how to express an operator that acts agsdtat Hilbert space spanned by an orthonor-

mal set|j). We can write the operator in terms of its action on thesesbstsites, by making use of the
completeness relation:

X|j)y = TX[j)

= S INIXN5)
2

= > Xpili),
4

whereXj/j is the j’ jth element of the matrix representing the linear actioX oh the basis. Furthermore,

AN~ A

X = X
= > DGR T

J5)
= > X
LY

The diagonal matrix elemei;; is often referred to as the “expectation value’obn state(j).

An important global characteristic of operators is theicé:

TI’)Z:ZX”.
J

For finite dimensional spaces the trace is easy to evaludtes @aasily seen to be independent of basis (hint:
insert the unit operator in above equation).

From now on we will drop theX” notation, unless essential to avoid misunderstanding simply refer to
the operator aX.

A general operatoA has a number of related operators that have their analogsainxnalgebra. The
operator transpos&' is defined by

AT =S AL
17
and the operator complex conjug#eby

A =%H><HAH’>*(J’\
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If A= AT, thenA is a symmetric operator, while K= —AT it is skew-symmetric. A very important related
operator is the Hermitian adjoint

AT = (AT =S 1) A (]
If A= AT thenA is Hermitian.

Hermitian operators are essential to quantum mechanicsask Ipostulate of quantum mechanics is that
physically meaningful entities of classical mechanicghsas momentum, energy, position, etc., are repre-
sented by Hermitian operators. Dirac called these entitibservables”. Hermitian operators have some
useful properties that again have their analog in matrielalg. Thus, starting from the basic definition of

Hermitian adjoint

(KIAK)* = (K|AT[k)
which means that if
Alg) = |y')
that
('] = (AT,
one can easily show that
(BA)T = ATBT
Now if both A andB are Hermitian operator#y'B = BA, whence
(BA)T = AB.

For this product operator to be also Hermitian, we regéBe= BA and this is only true iA andB commute.
This commutation property is so important in quantum memdsathat we define a special notation for it.
The commutator of two operators is defined as the operator

C=AB—BA=A B]

and the operator8 andB commute ifC = [A,B] = 0. Note that this result implies that if the commutator
[A,B] # 0 andA, B are both observables, then the proddBtis not an observable. We say th& &ndB are
incompatible observables”.

Eigenvalues/Eigenvectors

Since linear operators can be represented by matrices (@dimensional complex vector spaces), all the
relevant properties of such matrices follow also for opmsatThus,

* any single Hermitian operat@ can be diagonalized by a unitary transformation
UTAU = a,

wherea;j = agj.
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» elements of the diagonalized form are real eigenvafjesy, ...aq whered is the dimension of the
complex vector space. They may be degenerate, i.e., séxaiialg the same value. The det} is
called the “spectrum” oA.

* the eigenvalues are the roots of the secular equation
det(A—al) =0,
i.e., the roots of an algebraic equation of degitee
* the basis vectord), |2),...|d) that diagonalizeA are the eigenvectors (eigenkets) and satisfy
Aln) = ay|n).
Hence we may writd\ in terms of its eigenvectors/eigenvalues as

A= [maa(n|.

This is known as the spectral decomposition of A.
« eigenvectors with different eigenvalues are orthogonal.
e If A,,i=1,2,..K is a set of commuting Hermitian operators, i.e.,
[ALA]] =0

then one can simultaneously diagonalize the operators tiwithrsame unitary transformation. The

eigenvalues ara,q) and the eigenvectors satisfy

(A - all)jala?all%) =0
where the ket is labelled by all of its eigenvalues.

 If A B are Hermitian and do not commute, they cannot be simultahgadiagonalized.
Hermitian operators and unitary evolution (once again)
Unitary matrices are related to Hermitian matrices, as
U =¢€A,

sinceU T = exp(—iAT) = exp(—iA) and henc&JUT = 1.

What do we mean by the exponential of a linear operator? Tiniakix representation:

UNV+UNF+

Al — 1+ (iAt
+ (IAt) + > 3

with
A'=AA._A

the n-fold product. This is fine as long as the operator A is not ddpat on time itself, in which case we
need to be more careful.
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The unitary time evolution of quantum systems is determibgdhe Hermitian operator H which corre-
sponds to the observable of the system energy, according to

U(t) = e (/MH

wheret is the time andh a fundamental constant, Planck’s constant, which has ahésergy-time (Joule-
sec). The Hermitian operator H is called the “Hamiltoniamtahe above equation is a solution of the
time dependent Schrodinger equation. We shall give a hieudisrivation of this below by combining some
physical reasoning with the abstract framework of quanttates and operators.

3 Time evolution of real quantum systems

Given the three postulates relating the mathematical fnarieof quantum to physical systems, together
with the Planck-Einstein relation, we can now make a hdarigrivation of the time dependent Schrodinger
equation. One simple but critical leap of “analogy” to claakmechanics will be required.

Time evolution is characterized by a continuous parantet&ecause of superposition (postulate 1) , this
time evolution must be characterized by a linear transftionan the Hilbert space:

|W;t) =L|w;0)

Conservation of probability tells us that
(W;t|w;t) = (W;0|W;0)

Hence we conclude thaert =1, i.e.,L; is unitary, so write abl (t). More precisely then,
Wity =U (', 1)|W;t)

If the time origin is not important) depends only the the time difference, ilé(t’ —t). We also wanU to
obey the composition law

U(t2)U (t21) =U (t2+ta).
Then we obtain
U(t) = [Ut/N)N.

Now consider what happens as we make the time interval ieginital. Asét =t/N — 0,U(dt) — 1. We
can write an expression for this that is unitary to first oraler

U(8t) = 1—iA(dt),

where the operatak is Hermitian. What physical operator mightorrespond to? Here comes the physical
leap of analogy. First look at what the units Mfare; they are timet, i.e., the units of frequency. What
physical observable has units of frequency? The Planc&t&imrelation says th& = hw wherew is fre-
quency andh = h/2m, with h the fundamental Planck constant. So lets choose our opéradacorrespond

to energy divided b. Now we know that in classical mechanics that the energwisrgdy the Hamiltonian
operatorH = KE + PE and that this operator generates the time evolution. Soimple leap of analogy,
lets takehA to be equal to the quantum mechanical Hamiltonian opera&dicorresponds to the total energy
of the quantum system, i.e., a sum of kinetic and potentiaiggnoperators. Then we have

i
U(3t) =1— =Hat.
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The rest is plain sailing. We can either take the limit\as> « to derive the exponential formexp[—iHt /R
or, more simply, we use the composition law to write

U(t+8t)—U(t)

[U(dt) —Ju(t)

= —i==u).

Rewriting and taking the limi® — 0, we obtain

_0U
|ﬁW =HU(t).

This is the Schrodinger equation for the time evolution efmU (t). Rewriting the evolution operator in
its full form asU (t,tp) and multiplying on the right bW;t0> , we find

iﬁww;t@ = HU (t,10)|W;to),

which is equivalent to

_O|w;t)

h——~—=H|W¥;t).

| dt ‘ ? >
So we have arrived at the time dependent Schrodinger equatidhe time evolution of the wave function
of a quantum system.

4 Position Representation of Quantum State Function

We will motivate this using the framework of measuremenisngider first the simpler example of a photon.
The polarization of the photon can be either horizonithl ¢r vertical ¥), from which we have a discrete
basis of two stateb—l> and\V> . We can measure the polarization by passing the photonghrapolarizer
crystal, which passes either or V light depending on its orientation. The measurement opexdor this
simple 2-state basis are

Mi = [H) (H|,Mv = V) {v].

A single measurement on an arbitrary sttl;e) will collapse W’> onto one of the two orthonormal basis
vectors. For example, if thed measurement is made, the state after measurement will be

) ( (H|w) ) |
V (@H)(H W)
If the measurement is repeated many times, this state wiblbened with probability
Ry =[(H| )"
Now consider a particle in a quantum state, e.g., the enexggt bf a hydrogen atom. The hydrogen atom

consists of 1 positively charged proton in the nucleus anédatively charged electron. The electron is
~ 1800 times lighter than the proton, so to a first approxinmattee electron can be regarded as moving
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around a stationnary proton. The possible energy levelthfsrelectronic motion form a discrete, infinite
set of levels of negative total energy (indicating overaiding to the proton), and are given by the relation
En~ -1/, n=1,23, ... The energy eigenvecto¢s> formed by these energy levels form an infinite
dimensional Hilbert space. Now what if we want to observedlsetron? It is moving in configuration
space, so lets consider the effect of the measurement opetatesponding to a locationin configuration
space. The measurement operator is

Po=r)(r|
and a measurement on the kgt collapses this onto the stafte) (r| ), with probability
(r|w)? = w(r)P.

So |Y(r)| is the probability amplitude of finding an electronrati.e., “the wave function in the position
representation”. Note that the state after measuremeim¢ igdsition keﬂr} .

We can understand this in a pictorial manner by imaginingsisb@onsisting of a very densely spread set of
delta functions: the wave function is the amplitude of thedikpansion of the quantum state in this basis.

W) = Yalr

(le) = yalln)
= 0;o(r—ry)
lLAWE

The position representation is defined by the continuousfdeisis vector$r> , satisfying

/dr\r> {r| = 1 (completeness)
(r|r"y = a(r—r"),
whered(r —r’) is the Dirac delta function. This is defined by the relatidmo@@n here for 1D)

/+mdx5(x—x’)f(x’)dx’ — f().

—00

Setting f(x) = 1 shows that the integral under the delta function is equahity. The three dimensional
delta function is given by

O(r—r')=3(x—X)d(y—y)d(z—2).

We can regard the Dirac delta function as the limit of a seqaei functions possessing unit norm, e.g., a
sequence of Gausssians with variable witlth

(X202

1
fy = ex
A AV 2T P

Note that the norm of the basis stal{e$ is ill-defined, unless one agrees to implicitly integraterthe
position coordinate and make use of the delta function ptepe
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To summarize, the kéw> can be expanded in the position representation as
) = [ar'l) (el w)

The inner product between two stdig) and |@) can be expressed in terms of the corresponding wave
functions in the position representation:

(o|w)

I
\

Qo
=
E)
=
=
<
~

Now the norm is well-behaved
(wlw)= [ v =1

This implies we can choose a set of functigmér ) satisfying

[ ()@l )cr = &

which is just the orthonormality condition betwem> and |(nn> We can make this set of functions a
basis for the Hilbert space spanned by the energy eige9$n§teThis basis of wave functions in position
representation has a well behaved norm

el 2= [ lonr) Per =1

These functions are therefore a set of square integrabtidms, often also called? functions.

Similar arguments lead to the definition of the momentumeasgntation. The k§w> can be expanded in
the momentum representation as

) = [ ao'le’) (o] )

where(p'| ) = Y(p') is the probability amplitude to find the particle with momemtp’. It is the wave
function in the momentum representation. Note that egeintyl, it can be understood as the expansion
coefficient in the expansion in momentum eigenstgiés.

Projecting this expansion into the position represemtajields the basic equation relating position and
momentum representations of a quantum s{tat)a

W) = (r|w) = [dp(r|p)u(e).

Note that using the Dirac notation we are correct in writiaigon both right and left hand sides of this
equation. However, the two functions may have very diffedgpendence on their respective variables
andp. To avoid confusion, one usually gives these different rarea.,(r) andJ(p).

Transformation between position and momentum representations
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What is the transformation eleme(1t| p’> in the above equation? If we set this equale’ then the
equation looks like a Fourier transform of the wave funciiomomentum spacel(p), i.e.,

w(r) = [ dpe” g(p).

This is not quite a Fourier transform, since we have momentuather than wave vectdein the integral.
However,p andk satisfy thede Broglie relation,

p = Pk
which leads to the Fourier transform relation
w(r) = [ dke“" )

where we have omitted factors lofand 2.
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