
C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05
Fall 2005 Lecture 11

In this and the next lecture we summarize the essential physical and mathematical aspects of quantum
mechanics relevant to this course. Topics in this set of notes: Planck-Einstein, postulates, operators, repre-
sentations.

Planck-Einstein Relation E = hν

This is the equation relating energy to frequency. It was theearliest equation of quantum mechanics, imply-
ing that energy comes in multiples (“quanta”) of a fundamental constanth. It is written as either

E = hν

or

E = h̄ω

whereh̄ = h/2π. ν is linear frequency andω is angular frequency. The fundamental constanth is called
Planck’s constant and is equal to 6.62608×10−34 Js (̄h = 1.05457×10−34 Js, or 1.05457×10−27 erg s).

This relation was first proposed by Planck in 1900 to explain the properties of black body radiation. The
interpretation was that matter energy levels are quantized. At the time this appeared compatible with the
notion that matter is composed of particles that oscillate.The discovery that the energy of electrons in
atoms is given by discrete levels also fitted well with the Planck relation. In 1905 Einstein proposed that the
same equation should hold also for photons, in his explanation of the photoelectric effect. The light incident
on a metal plate gives rise to a current of electrons only whenthe frequency of the light is greater than a
certain value. This value is associated with the energy required to remove an electron from the metal (the
“work function”). The electron is ejected only when the light energy matches the discrete electron binding
energy. Einstein’s proposal that the light energy is quantized just like the electron energy was more radical
at the time: light quantization was harder for people to accept than quantization of energy levels of matter
particles. (The word “photon” for these quantized packets of light energy came later, given by G. N. Lewis,
of Lewis Hall!)

1 Fundamental physical postulates
Why do quantum state evolve in time according to this particular operator, and what is the meaning of this
operator? To answer this we have to look at quantum mechanicsfrom a more physical perspective. The
physical basis of quantum mechanics rests on three fundamental postulates. These are given below in the
wording of K. Gottfried and T. M. Yan (Quantum Mechanics: Fundamental, Springer 2003).

I. States, superposition The most complete description of thestate of any physical systemS at any time is
provided by some vector

∣

∣v
〉

in the Hilbert spaceH appropriate to the system. Every linear combination of
such state vectors

∣

∣Ψ
〉

represents a possible physical state ofS.

This last sentence is thesuperposition principle that we have been using from the very beginning. Note the
difference between a quantum and a classical description ofa physical system. A classical description is
complete with specification of the positions and momenta of all particles, each of which can be precisely
measured at any time. In contrast, the quantum description is specified by the wave function

∣

∣Ψ
〉

that lives
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in an abstract Hilbert space that has no direct connection tothe physical world. Classical mechanics is
deterministic - particle positions and momenta can be specified for all times using the classical equations of
motion. In contrast, quantum mechanics provides a statistical prediction of the outcomes of all observables
on the system as the wave function

∣

∣Ψ
〉

evolves. Both descriptions are “complete” but they differ in the
information that can be obtained. The uncertainty principle fundamentally changes the relation between
coordinates and momenta in quantum mechanics.

II. Observables The physically meaningful entities of classical mechanics, such as position (q or x), momen-
tum (p), etc. are represented by Hermitian operators. Following Dirac, we refer to these as “observables”.
We generalize these today to any physical meaningful entities, i.e., including those observables that have no
classical correspondence (e.g., intrinsic spin).

III. Probabilistic interpretation and Measurement A set ofN replicas of a quantum systemS described
by a state

∣

∣Ψ
〉

when subjected to measurements for a physical observableA, will yield in each measure-
ment one of the eigenvalues{a1,a2, ...} of Â and asN → ∞ this eigenvalue will appear with probability
PΨ(a1),PΨ(a2), ... where

PΨ(ai) = |
〈

ai

∣

∣Ψ
〉

|2

and
∣

∣ai
〉

is the eigenvector corresponding to the eigenvalueai.

This is precisely the definition of probability in terms of specific outcomes in a sequence of identical tests
on copies ofS, provided that

∑
i

PΨ(ai) = ∑
i

|
〈

ai
∣

∣Ψ
〉

|2 =
〈

Ψ
∣

∣Ψ
〉

= 1.

This is automatically satisfied for states that are normalized to unity.

The expectation value of an observableA in an arbitrary state
∣

∣Ψ
〉

also looks like an average over a proba-
bility distribution:

〈A〉Ψ =
〈

Ψ
∣

∣ Â
∣

∣Ψ
〉

= ∑
i

〈

Ψ
∣

∣ai
〉

ai
〈

ai
∣

∣Ψ
〉

= ∑
i

aiPΨ(ai).

Note that if the stateΨ is an eigenstate ofA, then
〈

Ψ
∣

∣A
∣

∣Ψ
〉

= a j

wherea j is the corresponding eigenvalue, i.e., only a single term contributes.

We can generalize this procedure from projection onto eigenstates to projection onto an arbitrary state
∣

∣φ
〉

.
Thus, the probability to find a quantum systemS that is in state

∣

∣Ψ
〉

in another state
∣

∣φ
〉

is equal to

PΨ(φ) = |
〈

φ
∣

∣

∣

∣Ψ
〉

|2.

This projection of the ket
∣

∣Ψ
〉

onto another state, be it an eigenfunction of some operator
∣

∣ai
〉

, a basis
function for the Hilbert space

∣

∣vi
〉

, or an arbitrary state
∣

∣φ
〉

, is referred to as a “probability amplitude”, since
its square modulus is a probability. Note that the probability amplitude is specified both by

∣

∣Ψ
〉

and the
other state: the latter specifies the “representation” of

∣

∣Ψ
〉

which realizes the quantum state in a measurable
basis. The probability amplitude is also referred to as the “wave function” in the specified “representation”.
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A single measurement of th observable A on a state
∣

∣Ψ
〉

in the basis (representation) of eigenstates ofÂ
will yield the valueai, with probabilityPΨ(ai) = |

〈

ai
∣

∣Ψ
〉

|2. This defines the measurement operator

M̂i =
∣

∣ai
〉〈

ai
∣

∣

that acts on the state
∣

∣Ψ
〉

. The normalized state after measurement is then easily seento be equal to

M̂i
∣

∣Ψ
〉

√

〈

Ψ
∣

∣M†
i Mi

∣

∣Ψ
〉

.

For a measurement in the
∣

∣ai
〉

basis this is given by

∣

∣i
〉

〈

i
∣

∣

∣

∣Ψ
〉

√

〈

Ψ
∣

∣M†
i Mi

∣

∣Ψ
〉

,

where we have abbreviated
∣

∣ai
〉

≡
∣

∣i
〉

.

For example, suppose we have the linear superposition
∣

∣Ψ
〉

= α1
∣

∣1
〉

+ α2
∣

∣2
〉

+ α3
∣

∣3
〉

+ ...+ αk

∣

∣k
〉

.

Making a single measurement of the observableA on
∣

∣Ψ
〉

will result in the outcomeai with probability

PΨ(ai) = |αi|2

and the resulting state after the measurement is equal to

∣

∣i
〉

(

αi

|αi|

)

.

The measurement of the observable has “collapsed” the state
∣

∣Ψ
〉

to a single eigenstate
∣

∣i
〉

≡
∣

∣ai
〉

of Â
(recall these constitute an orthonormal basis).

2 Operators
In an earlier lecture we defined the operatorP = |ν〉〈ν | which projects an arbitrary state onto the state|ν〉.
For an orthonormal basis{| j〉} we can define the set of projection operatorsPj = | j〉〈 j| which obey the
so-called “completeness relation”∑k

j=1 Pj = ∑ j | j〉〈 j| = 1.

A linear operator maps states (kets) onto linear combinations of other states (kets). Suppose a ket|b〉 is
mapped to a ket|a〉: the operator for this is denoted by the outer product|a〉〈b|. So the action of linear
operators can easily be written in our bra-ket language, e.g.,

X |ψ〉 = |a〉〈b|ψ〉
Y |ψ〉 = |c〉〈d|ψ〉

XY |ψ〉 = |a〉〈b|c〉〈d|ψ〉.
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If one these kets is a superposition of states, e.g.,|a〉 = α |0〉+ β |1〉, then the resulting state is also a super-
position, i.e.,

X |ψ〉 = (〈b|ψ〉α)|0〉+(〈b|ψ〉β )|1〉.

So the bra-ket notation is naturally suited to the linear nature of quantum mechanical operators.

The inner product in the center of the last equation is a number, so clearly the “product”XY is also an
operator. We often denote operators by the notationX̂ . Note that the order of these operators matters:
applyingX̂Ŷ to |ψ〉 results in a state proportional to|a〉, while applyingŶ X̂ results in a state proportional to
|c〉.
Now lets consider how to express an operator that acts on states in a Hilbert space spanned by an orthonor-
mal set| j〉. We can write the operator in terms of its action on these basis states, by making use of the
completeness relation:

X̂ | j〉 = ÎX̂ | j〉
= ∑

j′
| j′〉〈 j′|X̂ | j〉

= ∑
j′

X j′ j| j′〉,

whereX j′ j is the j′ jth element of the matrix representing the linear action ofX̂ on the basis. Furthermore,

X̂ = ÎX̂ Î

= ∑
j, j′

| j〉〈 j|X̂ | j′〉〈‘ j′|

= ∑
j, j′

X j j′| j〉〈 j′|.

The diagonal matrix elementX j j is often referred to as the “expectation value” ofX̂ on state| j〉.
An important global characteristic of operators is their trace:

TrX̂ = ∑
j

X j j.

For finite dimensional spaces the trace is easy to evaluate and is easily seen to be independent of basis (hint:
insert the unit operator in above equation).

From now on we will drop the “̂X ” notation, unless essential to avoid misunderstanding, and simply refer to
the operator asX .

A general operatorA has a number of related operators that have their analogs in matrix algebra. The
operator transposeAT is defined by

AT = ∑
j j′
| j〉〈 j′|A| j〉〈 j′|

and the operator complex conjugateA∗ by

A∗ = ∑
j j′
| j〉〈 j|A| j′〉∗〈 j′|
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If A = AT , thenA is a symmetric operator, while ifA = −AT it is skew-symmetric. A very important related
operator is the Hermitian adjoint

A† = (A∗)T = ∑ j j′| j〉〈 j′|A j〉∗〈 j′|

If A = A†, thenA is Hermitian.

Hermitian operators are essential to quantum mechanics. A basic postulate of quantum mechanics is that
physically meaningful entities of classical mechanics, such as momentum, energy, position, etc., are repre-
sented by Hermitian operators. Dirac called these entities“observables”. Hermitian operators have some
useful properties that again have their analog in matrix algebra. Thus, starting from the basic definition of
Hermitian adjoint

〈k|A|k′〉∗ = 〈k′|A†|k〉

which means that if

A|ψ〉 = |ψ ′〉

that

〈ψ ′| = 〈ψ |A†,

one can easily show that

(BA)† = A†B†.

Now if both A andB are Hermitian operators,A†B† = BA, whence

(BA)† = AB.

For this product operator to be also Hermitian, we requireAB = BA and this is only true ifA andB commute.
This commutation property is so important in quantum mechanics that we define a special notation for it.
The commutator of two operators is defined as the operator

C = AB−BA = [A,B]

and the operatorsA andB commute ifC = [A,B] = 0. Note that this result implies that if the commutator
[A,B] 6= 0 andA,B are both observables, then the productAB is not an observable. We say that “A andB are
incompatible observables”.

Eigenvalues/Eigenvectors

Since linear operators can be represented by matrices (on finite dimensional complex vector spaces), all the
relevant properties of such matrices follow also for operators. Thus,

• any single Hermitian operatorA can be diagonalized by a unitary transformation

U†AU = a,

whereai j = aδi j.
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• elements of the diagonalized form are real eigenvaluesa1,a2, ...ad whered is the dimension of the
complex vector space. They may be degenerate, i.e., severalhaving the same value. The set{ai} is
called the “spectrum” of̂A.

• the eigenvalues are the roots of the secular equation

det(A−aI) = 0,

i.e., the roots of an algebraic equation of degreed.

• the basis vectors|1〉, |2〉, ...|d〉 that diagonalizeA are the eigenvectors (eigenkets) and satisfy

A|n〉 = an|n〉.

Hence we may writeA in terms of its eigenvectors/eigenvalues as

A = ∑
n
|n〉an〈n|.

This is known as the spectral decomposition of A.

• eigenvectors with different eigenvalues are orthogonal.

• If Ai, i = 1,2, ...K is a set of commuting Hermitian operators, i.e.,

[Ai,A j] = 0

then one can simultaneously diagonalize the operators withthe same unitary transformation. The
eigenvalues area(i)

n and the eigenvectors satisfy

{Ai −a(i)
n }|a(1)

n a(2)
n ...a(K)

n 〉 = 0

where the ket is labelled by all of its eigenvalues.

• If A,B are Hermitian and do not commute, they cannot be simultaneously diagonalized.

Hermitian operators and unitary evolution (once again)

Unitary matrices are related to Hermitian matrices, as

U = eiA,

sinceU† = exp(−iA†) = exp(−iA) and henceUU† = 1.

What do we mean by the exponential of a linear operator? Thinkmatrix representation:

eiAt = 1+(iAt)+
(iAt)2

2
+

(iAt)3

3
+ ...

with

An = AA...A

then-fold product. This is fine as long as the operator A is not dependent on time itself, in which case we
need to be more careful.
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The unitary time evolution of quantum systems is determinedby the Hermitian operator H which corre-
sponds to the observable of the system energy, according to

U(t) = e−(i/h̄)Ht

wheret is the time and̄h a fundamental constant, Planck’s constant, which has unitsof energy-time (Joule-
sec). The Hermitian operator H is called the “Hamiltonian” and the above equation is a solution of the
time dependent Schrodinger equation. We shall give a heuristic derivation of this below by combining some
physical reasoning with the abstract framework of quantum states and operators.

3 Time evolution of real quantum systems
Given the three postulates relating the mathematical framework of quantum to physical systems, together
with the Planck-Einstein relation, we can now make a heuristic derivation of the time dependent Schrodinger
equation. One simple but critical leap of “analogy” to classical mechanics will be required.

Time evolution is characterized by a continuous parametert. Because of superposition (postulate I) , this
time evolution must be characterized by a linear transformation in the Hilbert space:

∣

∣Ψ; t
〉

= Lt
∣

∣Ψ;0
〉

Conservation of probability tells us that
〈

Ψ; t
∣

∣Ψ; t
〉

=
〈

Ψ;0
∣

∣Ψ;0
〉

Hence we conclude thatL†
t Lt = 1, i.e.,Lt is unitary, so write asU(t). More precisely then,

∣

∣Ψ; t ′
〉

= U(t ′, t)
∣

∣Ψ; t
〉

If the time origin is not important,U depends only the the time difference, i.e.,U(t ′− t). We also wantU to
obey the composition law

U(t2)U(t1) = U(t2 + t1).

Then we obtain

U(t) = [U(t/N)]N .

Now consider what happens as we make the time interval infinitesimal. Asδ t = t/N → 0,U(δ t) → 1. We
can write an expression for this that is unitary to first orderas

U(δ t) = 1− i∆(δ t),

where the operator∆ is Hermitian. What physical operator might∆ correspond to? Here comes the physical
leap of analogy. First look at what the units of∆ are; they are time−1, i.e., the units of frequency. What
physical observable has units of frequency? The Planck-Einstein relation says thatE = h̄ω whereω is fre-
quency and̄h = h/2π, with h the fundamental Planck constant. So lets choose our operator ∆ to correspond
to energy divided bȳh. Now we know that in classical mechanics that the energy is given by the Hamiltonian
operatorH = KE + PE and that this operator generates the time evolution. So in a simple leap of analogy,
lets takēh∆ to be equal to the quantum mechanical Hamiltonian operator that corresponds to the total energy
of the quantum system, i.e., a sum of kinetic and potential energy operators. Then we have

U(δ t) = 1− i
h̄

Hδ t.
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The rest is plain sailing. We can either take the limit asN → ∞ to derive the exponential formexp[−iHt/h̄]
or, more simply, we use the composition law to write

U(t + δ t)−U(t) = [U(δ t)−1]U(t)

= −i
δ tH

h̄
U(t).

Rewriting and taking the limitδ → 0, we obtain

ih̄
∂U
∂ t

= HU(t).

This is the Schrodinger equation for the time evolution operatorU(t). Rewriting the evolution operator in
its full form asU(t, t0) and multiplying on the right by

∣

∣Ψ; t0
〉

, we find

ih̄
∂U(t, t0)

∂ t

∣

∣Ψ; t0
〉

= HU(t, t0)
∣

∣Ψ; t0
〉

,

which is equivalent to

ih̄
∂
∣

∣Ψ; t
〉

∂ t
= H

∣

∣Ψ; t
〉

.

So we have arrived at the time dependent Schrodinger equation for the time evolution of the wave function
of a quantum system.

4 Position Representation of Quantum State Function
We will motivate this using the framework of measurements. Consider first the simpler example of a photon.
The polarization of the photon can be either horizontal (H) or vertical (V ), from which we have a discrete
basis of two states

∣

∣H
〉

and
∣

∣V
〉

. We can measure the polarization by passing the photon through a polarizer
crystal, which passes eitherH or V light depending on its orientation. The measurement operators for this
simple 2-state basis are

MH =
∣

∣H
〉〈

H
∣

∣ ,MV =
∣

∣V
〉〈

V
∣

∣ .

A single measurement on an arbitrary state
∣

∣ψ
〉

will collapse
∣

∣ψ
〉

onto one of the two orthonormal basis
vectors. For example, if theH measurement is made, the state after measurement will be

∣

∣H
〉





〈

H
∣

∣ψ
〉

√

〈

ψ
∣

∣H
〉〈

H
∣

∣ψ
〉



 .

If the measurement is repeated many times, this state will beobtained with probability

PH = |
〈

H
∣

∣ψ
〉

|2.

Now consider a particle in a quantum state, e.g., the energy level of a hydrogen atom. The hydrogen atom
consists of 1 positively charged proton in the nucleus and 1 negatively charged electron. The electron is
∼ 1800 times lighter than the proton, so to a first approximation the electron can be regarded as moving
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around a stationnary proton. The possible energy levels forthis electronic motion form a discrete, infinite
set of levels of negative total energy (indicating overall binding to the proton), and are given by the relation
En ∼ −1/n2, n = 1,2,3, ...... The energy eigenvectors

∣

∣n
〉

formed by these energy levels form an infinite
dimensional Hilbert space. Now what if we want to observe theelectron? It is moving in configuration
space, so lets consider the effect of the measurement operator corresponding to a locationr in configuration
space. The measurement operator is

Pr =
∣

∣r
〉〈

r
∣

∣

and a measurement on the ket
∣

∣ψ
〉

collapses this onto the state
∣

∣r
〉〈

r
∣

∣ψ
〉

, with probability

|
〈

r
∣

∣ψ
〉

|2 = |ψ(r)|2.

So |ψ(r)| is the probability amplitude of finding an electron atr, i.e., “the wave function in the position
representation”. Note that the state after measurement is the position ket

∣

∣r
〉

.

We can understand this in a pictorial manner by imagining a basis consisting of a very densely spread set of
delta functions: the wave function is the amplitude of the the expansion of the quantum state in this basis.

∣

∣ψ
〉

= ∑
i

αi

∣

∣ri
〉

〈

r
∣

∣ψ
〉

= ∑
i

αi
〈

r
∣

∣ri
〉

= αiδ (r− ri)

= ψ(r).

The position representation is defined by the continuous setof basis vectors
∣

∣r
〉

, satisfying

∫

dr
∣

∣r
〉〈

r
∣

∣ = 1 (completeness)
〈

r
∣

∣r′
〉

= δ (r− r′),

whereδ (r− r′) is the Dirac delta function. This is defined by the relation (shown here for 1D)
∫ +∞

−∞
dxδ (x− x′) f (x′)dx′ = f (x).

Setting f (x) = 1 shows that the integral under the delta function is equal tounity. The three dimensional
delta function is given by

δ (r− r′) = δ (x− x′)δ (y− y′)δ (z− z′).

We can regard the Dirac delta function as the limit of a sequence of functions possessing unit norm, e.g., a
sequence of Gausssians with variable widthλ :

fλ =
1

λ
√

2π
exp−(x−x′)2/2λ2

.

Note that the norm of the basis states
∣

∣r
〉

is ill-defined, unless one agrees to implicitly integrate over the
position coordinate and make use of the delta function property.
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To summarize, the ket
∣

∣ψ
〉

can be expanded in the position representation as

∣

∣ψ
〉

=

∫

dr′
∣

∣r′
〉〈

r′
∣

∣

∣

∣ψ
〉

The inner product between two state
∣

∣ψ
〉

and
∣

∣φ
〉

can be expressed in terms of the corresponding wave
functions in the position representation:

〈

φ
∣

∣ψ
〉

=

∫

dr
〈

φ
∣

∣r
〉〈

r
∣

∣ψ
〉

=

∫

drφ∗(r)ψ(r).

Now the norm is well-behaved

〈

ψ
∣

∣ψ
〉

=

∫

ψ∗(r)ψ(r)dr = 1.

This implies we can choose a set of functionsφn(r) satisfying

∫

φ∗
n (r)φm(r)dr = δmn

which is just the orthonormality condition between
∣

∣φn
〉

and
∣

∣φm
〉

. We can make this set of functions a
basis for the Hilbert space spanned by the energy eigenstates

∣

∣n
〉

. This basis of wave functions in position
representation has a well behaved norm

||φn||2 =

∫

|φn(r)|2dr = 1.

These functions are therefore a set of square integrable functions, often also calledL2 functions.

Similar arguments lead to the definition of the momentum representation. The ket
∣

∣ψ
〉

can be expanded in
the momentum representation as

∣

∣ψ
〉

=
∫

dp′∣
∣p′〉〈

p′∣
∣ψ

〉

where
〈

p′∣
∣ψ

〉

= ψ(p′) is the probability amplitude to find the particle with momentum p′. It is the wave
function in the momentum representation. Note that equivalently, it can be understood as the expansion
coefficient in the expansion in momentum eigenstates

∣

∣p′〉 .

Projecting this expansion into the position representation yields the basic equation relating position and
momentum representations of a quantum state

∣

∣ψ
〉

:

ψ(r) =
〈

r
∣

∣ψ
〉

=

∫

dp′〈r
∣

∣p′〉ψ(p′).

Note that using the Dirac notation we are correct in writingψ on both right and left hand sides of this
equation. However, the two functions may have very different dependence on their respective variablesr
andp. To avoid confusion, one usually gives these different names, e.g.,ψ(r) andψ̃(p).

Transformation between position and momentum representations
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What is the transformation element
〈

r
∣

∣p′〉 in the above equation? If we set this equal toeip·r then the
equation looks like a Fourier transform of the wave functionin momentum space,̃ψ(p), i.e.,

ψ(r) =
∫

dpeip·rψ̃(p).

This is not quite a Fourier transform, since we have momentump rather than wave vectork in the integral.
However,p andk satisfy thede Broglie relation,

p = h̄k

which leads to the Fourier transform relation

ψ(r) =

∫

dkeik·rψ̃(k)

where we have omitted factors ofh̄ and 2π.
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