
C/CS/Phys 191 Circuits, Randomized computation, Deferred measurements 9/29/05
Fall 2005 Lecture 10

1 Readings to complement lecture 9
For an introductory overview to complexity theory, see S. Mertens, cond-mat/0012185. A short summary is
also in lecture 3 of CS294, Fall 2002, which you can find via the web page of Professor Vazirani in CS.

2 Review of quantum circuit model
Recall that in the quantum circuit model we haven qubits that we can manipulate in the following ways:

1. Initialization: The qubits can be initialized to the state
∣∣0n

〉
. Preparing a different input state

∣∣x〉 ,
x∈ {0,1}n can be done by flipping the required bits.

2. Universal set of gates: Certain sets of one- and two-qubit gates can approximate any constant dimen-
sional unitary transformation sufficiently closely. For example, the CNOT gate together with all one
qubit transformations (rotations on the Bloch sphere) forms a universal gate set.

3. Measurement of some (or all) of the qubits output by the quantum circuit. For example if
∣∣ψ〉

=
∑x αx

∣∣x〉 and we do a full measurement in the standard/computational basis, then we measurex with
probability |αx|2. If we only measure the firstk bits of x, then the probability of measuringz∈
{0,1}k is ∑x:z is a prefix ofx|αx|2. The resulting partially collapsed quantum state is, up to normalization,
∑x:z is a prefix ofx αx

∣∣x〉 .

4. Classical postprocessing of the measured value to get the solution to the problem being solved. Quan-
tum computers are expensive and rare (!), so we would probably prefer to use classical processing as
much as possible.

The size of a quantum circuit is the number of gates in the circuit. We are interested in findingefficient
circuits for problems, i.e., circuits for which the total size of the circuit is polynomially bounded in the
number of input bits. For example, a family of circuits of sizec ·n5 is good. But exponentially large – 2n –
circuits are bad.

3 Randomized computation
Many important classical algorithms are randomized. For example, the most common primality testing
algorithm needs as input a random string which is then used to construct a test of whether the number is
prime (see, e.g., ”primality test” in http://Mathworld.wolfram.com). (Note that a deterministic polynomial
time algorithm was discovered in 2002 by Agrawal et al.)

For eachx, for most choices ofr, the circuit computes the correct answer.

To simulate quantumly:

1. First create the corresponding reversible circuit with inputsx, r and ancilla 0’s.
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Figure 1:A circuit for primality testing which takes as additional input a random stringr.

Figure 2:The corresponding quantum circuit; copying with a CNOT the qubits1√
2
(
∣∣0〉

+
∣∣1〉

) is equivalent
to measuring them, giving a random stringr.

2. To randomizer, feed each
∣∣0〉

qubit wire through a Hadamard gate, giving1√
2
(
∣∣0〉

+
∣∣1〉

). Immedi-
ately after applying the Hadamard gate, measure each qubit ofr.

3. Instead of measuring the qubits ofr, it is sufficient to copy (with CNOT gates) the outputs of the
Hadamard gates into fresh qubits. For example, we change1√

2
(
∣∣0〉

+
∣∣1〉

)
∣∣0〉

to 1√
2
(
∣∣00

〉
+

∣∣11
〉
).

Since they are entangled, measuring the bits into which we copied each computational basis state ofr
is equivalent to measuring the bits ofr itself.

4. In fact, though, it doesn’t matter whether we measure the fresh qubits before or after running the
quantum circuit. In fact, we can delay their measurement arbitrarily long, or just avoid it altogether.
This is known as the “principle of deferred measurement.” Measurement is equivalent to entanglement
of the system with its environment.

Another example of this principle of deferred measurement can be shown for teleportation. Figure3 shows
the usual teleportation circuit in which Alice (on left) performs the measurements of qubits 1 and 2, then
sends the classical output of these measurements to Bob (on right). Figure4 shows the equivalent circuit
in which the measurements are done at the end, rather than in the middle. Instead of unitaries condition on
the result of Alice’s measurements, Bob makes controlled unitary operations on qubit 3. You can convince
yourselves of the equivalence by writing out the states and actions of the measurements and controlled
unitaries on then. The notation here is such that

∣∣β00
〉

=
∣∣φ+

〉
= 1√

2

(∣∣00
〉

+
∣∣11

〉)
.
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Figure 3: The usual teleportation circuit with measurement performed by Alice on qubits 1 and 2, who
then sends the classical information from this to Bob who performs single qubit unitaries conditional on the
results on qubit 3.

Figure 4:The deferrred measurement quantum teleportation circuit.

C/CS/Phys 191, Fall 2005, Lecture 10 3


