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CS188 Spring 2011 Written 2: Minimax, Expectimax, MDPs
Due: Monday 2/28 at 5:29pm either in lecture or in 283 Soda Drop Box (no slip days).

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually. Recall to
make a photo-copy of your solutions to allow you to resubmit for partial credit recovery. See course webpage
for details.

1 [11 pts] Minimax Search and Pruning
Consider the zero-sum game tree shown below. Trapezoids that point up, such as at the root, represent choices for the player
seeking to maximize; trapezoids that point down represent choices for the minimizer.

[1 pt] (a) Assuming both opponents act optimally, carry out the minimax search algorithm. Write the value of each node
inside the corresponding trapezoid and highlight the action the maximizer would take in the tree.

[3 pt] (b) Now reconsider the same game tree, but use α-β pruning (the tree is printed on the next page). Expand successors
from left to right. In the brackets [ , ], record the [α, β] pair that is passed down that edge (through a call to MIN-VALUE or
MAX-VALUE). In the parentheses ( ), record the value (v) that is passed up the edge (the value returned by MIN-VALUE or
MAX-VALUE). Circle all leaf nodes that are visited. Put an ‘X’ through edges that are pruned off.

[1 pt] (c) True / False. Minimax and α-β pruning are guaranteed to find the same value of the top node.

[4 pt] (d) Consider again the same game tree, searched using α-β pruning. This time, rather than expanding successors from
left to right assume you can decide the order in which you expand successors. Find the order that results in exploring as few
nodes as possible for this particular game. As in part (b), record the [α, β] values passed down the tree, and the (v) return
values passed up. Circle all leaf nodes that are visited. Put an ‘X’ through edges that are pruned off.

[2 pt] (e) Assume you have an evaluation function which for each node can provide an estimate of the minimax value (though
the estimate will not be perfect). How can you use these minimax value estimates to guide the order in which successors are
expanded, with the goal of minimizing the number of leaf nodes visited while running the α-β pruning algorithm?
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2 [8 pts] Expectimax for cs188-Blackjack
Blackjack is the most widely played casino betting game in the world. The goal of the game is to be dealt a hand whose value
is as close to 21 as possible without exceeding it. If the current value of a player’s hand is less than 21, the player can “hit”, or
be dealt a single card, in hopes of acquiring a hand with higher value. However, the player runs the risk of “busting”, or going
over 21, which results in an immediate loss. In casino play, players bet independently against a dealer, who plays according
to a fixed set of rules that govern when he should hit or stay.

In this problem set, we consider a simplified variant called cs188-Blackjack.

• There are only 3 cards in the deck: 5’s, 10’s and 11’s. Each card appears with equal probability.

• The casino has invented an infinite deck. The probability of being dealt any given card is independent of the cards
already dealt.

• To model the action of a dealer, we assume the casino gives fixed payoffs according to the following schedule (in dollars)
Hand Value Payoff

0-14 0
15 3
16 3
17 3
18 3
19 3
20 9
21 12

Bust -6

• There are two actions available: Hit, which draws a card uniformly at random and adds its value to your current score,
and Stay, which ends the game and yields the above payoff. If your score goes above 21 the game ends immediately
with a payoff of -6. It is not possible to hit on 21. Thus if you ever arrive at a hand value of ≥ 21, there are no actions
possible.

You are playing a hand of cs188-Blackjack. You have been dealt 1 card, and its value is 11.

[2 pts] (a) Build the expectimax tree for this game, starting from your current hand and including all chance and max nodes.
In your tree, you should put “hit” actions to the left of “stay” actions, and you should order max nodes below the same chance
node in increasing order of the hand’s value (from left to right). Write the value of each state next to the given node. What
is your optimal strategy? Specify your actions at all max nodes in the tree.
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[2 pt] (b) Unfortunately, you are playing at a table with an unscrupulous dealer who is rigging the deck. Every time he deals
a card, instead of dealing you a random card, he gives you the worst possible card you could get at that moment. What is
the value of the game now and what is your optimal strategy?

[2 pt] (c) When you complain about the cheating dealer to the pit boss, a new dealer is brought in. This dealer is extremely
nice: half of the time, when his boss is watching, he deals you a random card. The other half of the time, he deals you the
best possible card you could get at that moment. Draw out the game tree for this (using the same instructions as (a)). What
is the value of the game now and what is your optimal strategy?

[2 pt] (d) The casino owner, anxious about dwindling interest in cs188-Blackjack, asks you to help him rework the game. He
would like to increase the payouts for a value of 21 to $x. What is the minimal value of $x so that the optimal strategy for a
player holding 16 changes? Assume fair dealers (as was assumed in part (a)).
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3 [12 pts] Mission to Mars

You control a solar-powered Mars rover. It can at any time drive fast or
slow. You get a reward for the distance crossed, so fast gives +10 while
slow gives +4. Your rover can be in one of three states: cool, warm,
or off. Driving fast tends to heat up the rover, while driving slow

tends to cool it down. If the rover overheats, it shuts off, forever. The
transitions are shown to the right. Because critical research depends on
the observations of the rover, there is a discount of γ = 0.9.

s a s′ T (s, a, s′)

cool slow cool 1

cool fast cool 1/4

cool fast warm 3/4

warm slow cool 1/4

warm slow warm 3/4

warm fast warm 7/8

warm fast off 1/8

[1pt] (a) How many possible deterministic stationary policies are there?

[1 pt] (b) What is the value of the state cool under the policy that always goes slow?

[1 pt] (c) Fill in the following table of depth-limited values from value iteration for this MDP. Note that this part concerns
(optimal) value iteration, not evaluation of the always-slow policy.

s V0(s) V1(s) V2(s)

cool 0

warm 0

off 0 0 0

[1 pt] (d) How many rounds of value iteration will it take for the values of all states to converge to their exact values? (State
infinitely many if you think it will only have converged after infinitely many.)

[1pt] (e) What is the optimal policy for γ = .9?

s π∗(s)

cool

warm

[1pt] (f) What are the optimal values for the optimal policy when γ = .9?

s V ∗(s)

cool

warm

off 0
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[1pt] (g) Central command, demanding results faster, tells you that they don’t care about the future of the rover. In particular,
they say that your discount parameter γ should be .5. What are the optimal policy and values now?

s π∗(s)

cool

warm

s V ∗(s)

cool

warm

off 0

[2pt] (h) Now imagine that you do not know in advance what the thermal responses of the rover will be, so you decide to do
Q-learning. You observe the following sequence of transitions:

1. (cool, slow, 4) → cool

2. (cool, fast, 10) → cool

3. (cool, fast, 10) → cool

4. (cool, fast, 10) → warm

5. (warm, slow, 4) → cool

Give the Q-values for each step in this sequence as it is processed by Q-learning, assuming a learning rate (α) of 0.5 and a
discount factor γ = 0.9. For example, Q3(s, a) should be the Q-values after processing transitions 1, 2, and 3.

s a Q0(s, a) Q1(s, a) Q2(s, a) Q3(s, a) Q4(s, a) Q5(s, a)

cool slow 0

cool fast 0

warm slow 0

warm fast 0

[3pt] (i) An ε-greedy policy may not be the right choice for Q-learning in this situation given that the rover, once off, is lost
forever. On the other hand, it may not be optimal to never risk going fast from a warm state – perhaps the planet is very
cold and there is little risk. Imagine that you know that T (cool,fast,warm) = T (warm,fast,off) for all environments. Note:
this property is not true for the transitions above!

State a modified Q-learning update and procedure that exploits this knowledge and from which you will learn all optimal
Q-values without ever visiting the Q-state (warm,fast), assuming you do visit all other Q-states infinitely often. Be precise
(i.e. use math).
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