Using Freelmage 3.11 for Image Output

Niels Joubert, CS184 TA, UC Berkeley
2008-09-29

Freelmage is an input/output library written in C, compatible with Linux, OSX and Windows. You need
to download the latest source from http://freeimage.sourceforge.net/.

WARNING: Freelmage has one big caveat for projects at Berkeley. It is not on the instructional ma-
chines, thus you need to include the compiled library with your source code when you submit, and make
sure it runs on the instructional machines. !

1 Getting FreeImage and linking it to your source code.

e Extract the source zip into a folder of your choice.

e Find the library files (an .a and file for Linux or Mac, a .dll file for Windows) in the extracted directory,
and the FreeImage.h header file in ./Source directory. You can compile the source manually or just
use the supplied library files.

e Copy the .a and .h files to your root project folder. (For windows, see section 1.1.2)

1.1 Linking against Freelmage (and libraries in general)
1.1.1 With GCC - as on Mac and Linux

Let me preface this by saying that I don’t enjoy messing with linker issues. Its painful and incredibly
frustrating, and I really hope this document will help everyone avoid such issues! The g++ compiler has the
following flags that tells the linker about files of interest:> (Note the naming convention for libraries)?

—-I<directory> Add <directory> to the list of directories searched through for includes

This directory is searched through for .h files
eg: -I./

-L<directory> Add <directory> to the list of directories searched through for libraries.

This directory is searched through for object code files of type .a,
eg: -L./
-1<library> Links the given library object code into your executable.

Takes in the real name (eg. "freeimage" for "libfreeimage.a")
eg: —-lfreeimage

1As an alternative, ImageMagick is installed on all instructional machines.

2For this example, your source code is in “./”, your Freelmage.h is in “./” and your libfreeimage.a is in “./”, in other words,
all relevant files are in the root of your project folder.

3For more information on the naming of libraries, see http://tldp.org/HOWTO/Program-Library-HOWTO /shared-
libraries.html

.so,

etc

We compile and link C++ source code using the G++ (or GCC, really the same thing) compiler. Your fa-
vorite IDE (eclipse, xcode, kdevelop, textmate, emacs, vim, etc) most probably calls out to g++ to compile
your code, so it’s worth having some knowledge of what’s going on underneath the hood.

Note: In section 2 there is example code you can grab to try out compiling and linking.

To compile your source code (and your FreeImage.h is not in the same directory as your source code),
you need to supply g++ with the -I flag and the path to the directory containing FreeImage.h. This is
unnecessary in our case, where FreeImage.h is in the same folder as your source, but let’s show an example
for completeness:

g++ —c¢ -Wall -I./ test.cpp -o test.o

To link your compiled object files into one executable file, you need to supply g++ with the -L flag with a
path to the directory containing your FreeImage.a file, and the -1 flag with the name of the library, which
is “freeimage” in our case.

g++ -L./ -1lfreeimage test.o -o test

You can combine the linking and compiling steps, which is fine if you don’t have several source .cpp and .h
files. You can compile and link (assuming all your files is in the same directory) using:

g++ -Wall -I./ -L./ -1lfreeimage test.cpp -o test

If you have several source files, the best approach is to do these steps separately, which you can automate
with a Makefile, as section 4 will demonstrate.

1.1.2 With Visual Studio C++ on Windows

Thanks to Daniel Ritchie for contributing this section of the notes!

e Make sure you have the following three files: FreeImage.h, FreeImage.lib, and FreeImage.dll.
These should all be included in the .zip file you download from the Freelmage site.

e You can put these files anywhere as long as you tell Visual Studio where to look for them, but I like
the following setup for it’s simplicity:

1. Create a folder in your Project Directory (you typically have a solution directory, inside of which
you have one or more project directories) called FreeImage. Put the .h and the .1ib files in here.

2. Put the .d11 file directly into your Project Directory (it should be sitting alongside files such as
your .vcproj file).

3. In the Visual Studio Solution Explorer (It’s a tree-view widget that’s typically docked on the far-
right or far-left of the screen. If it’s not there, you can get to it via View->Solution Explorer
from the top menu), right click your project (it should be located under your Solution) and select
Properties.

4. Expand “Configuration Properties”, then “C/C++", and then select “General”. Enter
"$ (ProjectDir) /FreeImage" into the field titled “Additional Include Directories”. This tells
Visual Studio to look in this directory for any .h files that it can’t find in the standard locations.

5. Now expand “Linker” under “Configuration Properties”. In the General page, enter
"$(ProjectDir) /FreeImage" into the field titled “Additional Library Directories” (again, this
tells Studio to look here for .1ib files).

6. In Linker->Input, add "FreeImage.lib" to the “Additional Dependencies” field.

e You're done! Click OK and build your project.

NOTE: You might have noticed that I didn’t say anything about FreeImage.dll beyond putting it in your
Project Directory. It’s really important that you have it there, though—your project will still build without
it, but you won’t be able to run the program without it.

2 Including and using Freelmage in your source code.

You can use the following example code to test your linking and compiling stages. Paste this into your editor
of choice, and compile it with the above examples.

Listing 1: test.cpp : Simple FreeImage test code

#include <iostream >
#include " Freelmage.h”

using namespace std;

int main(int argc, char xargv[]) {
Freelmage _Initialise ();
cout << ”Freelmage.” << Freelmage_GetVersion() << "\n”;
cout << Freelmage_GetCopyrightMessage () << ”\n\n”;
Freelmage_Delnitialise ();

If everything went well, you should see the version and copyright message of Freelmage when you try
to run the created test executable. Notice how each Freelmage function starts with FreeImage_ to make it
easily identifiable. Neato!

2.1 Creating a bitmap and setting its pixels

We will use Freelmage to store bitmap data - color data for each pixel. FreeImage bitmaps have their origin
(0,0) at the bottom left corner of the image, which you need to take into account when you’re iterating
over your viewport.

To create a bitmap, use the FreeImage_Allocate API call:

FIBITMAP x bitmap = Freelmage_Allocate (WIDTH, HEIGHT, BitsPerPixel);

Where Width and Height is in pixels, and we use 24 bits per pixel. This function call returns a pointer to
an FIBITMAP struct. You don’t need to worry if you're not comfortable with pointers though, since all you
have to do it pass the “bitmap” object to other functions.

2.2 Saving image

We now convert the internal bitmap image representation into a compact image format (TIFF, PNG or
JPEG) on disk. I recommend using a lossless format (PNG or TIFF can both be lossless) since you would
rather not have the quality of your raytraced images be degraded by lossy compression.

To save an image use the FreeImage_Save API call:

Freelmage_Save (FIF_PNG, bitmap, ”filename.png”, 0)

For other formats and specific flags, see page 19 of the API documentation mentioned in section 2.3.

2.3 API documentation

Get the full API documentation in PDF format from http://freeimage.sourceforge.net/download.html
or read the header file.

2.4 Complete Example Code

Listing 2: Everything you need for pixel-level PNG output

#include <iostream>
#include ” Freelmage.h”

#define WIDTH 800
#define HEIGHT 600
#define BPP 24 //Since we’re outputting three 8 bit RGB values

using namespace std;

int main(int argc, char xargv[]) {
Freelmage _Initialise ();

FIBITMAP* bitmap = Freelmage_Allocate (WIDTH, HEIGHT, BPP);
RGBQUAD color ;

if (!bitmap)
exit (1); //WIF?! We can’t even allocate images? Die!

//Draws a gradient from blue to green:
for (int i=0; i<WIDTH; i++) {
for (int j=0; j<HEIGHT; j++) {

color .rgbRed = 0;
color.rgbGreen = (double)i / WIDTH % 255.0;
color.rgbBlue = (double)j / HEIGHT % 255.0;
Freelmage_SetPixelColor (bitmap,i,j,&color);
//Notice how we’re calling the & operator on "color”
//so that we can pass a pointer to the color struct.

}

if (Freelmage_Save (FIF_.PNG, bitmap, ”test.png”, 0))
cout << ”Image_successfully _saved!” << endl;

Freelmage_Delnitialise (); //Cleanup!

3 Submitting a project that uses Freelmage

You need to include Freelmage’s library files in your submission since it is not installed on the Instructional
Machines.

Windows: Include the .dll and .h files in your Visual Studio Solution submission, and confirm that it
compiles on one of the instructional machines.

Linux and Mac: Make sure you include the library files (specifically, the .a file) relevant to the
platform you’re submitting on. You need to compile your own library on the Solaris machines to generate a
libfreeimage.a file for your submission, which you can easily do using make. Confirm that your submission
runs on the instructional Solaris machines (for Linux) or instructional Mac (although it should be just as
easy to confirm that it works on Solaris as well). Feel free to ask me for help!

4 ADDENDUM: Example Makefile

Makefiles are great, and it is unfortunate that Berkeley students aren’t exposed to them more. We use
Makefiles to build source code from many separate .h and .cpp files, to reference libraries such as GLUT and
FreeImage that our code depends on, and to speed up compiling by doing partial compiles®.

Listing 3: Sample Makefile

#Basic Stuff
cc = g++ —g —Wall —02 —fmessage—length=0

#Libraries
CCOPTIS = —c #I don’t need —1 since everything is in the current directory
LDOPTS = —L./ —lfreeimage

#Final Files and Intermediate .o files
SOURCES = raytracer.cpp #ADD YOUR SOURCES
OBJECTS = raytracer.o #ADD YOUR .o FILES
TARGET = raytracer

#
raytracer: $(OBJECTS)

$
$(CC) $(LDOPTS) $(OBJECTS) —o $(TARCET)

raytracer.o:

$(CC) $(CCOPTS) $(SOURCES)
default: $(TARGET)

clean:

/bin/rm —f x.0 $(TARGETS)

Run it by typing “make” at the command line in the root of your project directory.

4" partial compiles” recompiles only the files that changed since the last compilation, thus saving compile time.

