CS-184: Computer Graphics

Lecture \#I8: Forward and Inverse Kinematics

Prof. James O'Brien
University of California, Berkeley
\qquad
\qquad

Today

- Forward kinematics
- Inverse kinematics
- Pin joints
- Ball joints
- Prismatic joints

Forward Kinematics

- Articulated skeleton

- Topology (what's connected to what)
- Geometric relations from joints
- Independent of display geometry
- Tree structure
- Loop joints break "tree-ness"

Forward Kinematics

5

Forward Kinematics

6

Wednesday, November 12, 2008

Forward Kinematics

Forward Kinematics

- Interior joints
- Typically not 6 DOF joints
- Pin - rotate about one axis
- Ball - arbitrary rotation
- Prism - translation along one axis

Forward Kinematics

- Pin Joints
- Translate inboard joint to local origin
- Apply rotation about axis
- Translate origin to location of joint on outboard body

9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13

Forward Kinematics

- Composite transformations up the hierarchy

Wednesday, November 12, 2008

Forward Kinematics

- Composite transformations up the hierarchy

${ }^{15}$
15

Forward Kinematics

- Composite transformations up the hierarchy

5

16
\qquad
\qquad (
\qquad

Inverse Kinematics

- Given
- Root transformation

- Initial configuration
- Desired end point location
- Find
- Interior parameter settings

\qquad

18

Inverse Kinematics

- A simple two segment arm in 2D

Inverse Kinematics

- Direct IK: solve for the parameters

19
\qquad

Inverse Kinematics

- Why is the problem hard?
- Multiple solutions separated in configuration space

Inverse Kinematics

- Why is the problem hard?
- Multiple solutions connected in configuration space

Inverse Kinematics

- Why is the problem hard?
- Solutions may not always exist

Inverse Kinematics

- Numerical Solution
- Start in some initial configuration
- Define an error metric (e.g. goal pos - current pos)
- Compute Jacobian of error w.r.t. inputs
- Apply Newton's method (or other procedure)
- Iterate...
\qquad

Inverse Kinematics

- Recall simple two segment arm:

Inverse Kinematics

- We can write of the derivatives

Inverse Kinematics

Inverse Kinematics

The Jacobian (of p w.r.t. θ)

$$
J_{i j}=\frac{\partial p_{i}}{\partial \theta_{j}}
$$

Example for two segment arm

$$
J=\left[\begin{array}{ll}
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}} \\
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}}
\end{array}\right]
$$

\qquad

Inverse Kinematics

The Jacobian (of p w.r.t. θ)

$$
\begin{aligned}
& J=\left[\begin{array}{ll}
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}} \\
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}}
\end{array}\right] \\
& \frac{\partial \boldsymbol{p}}{\partial \theta_{*}}=J \cdot\left[\begin{array}{l}
\frac{\partial \theta_{1}}{\partial \theta_{*}} \\
\frac{\partial \theta_{2}}{\partial \theta_{*}}
\end{array}\right]=J \cdot\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

\qquad

Inverse Kinematics

Solving for c_{1} and c_{2}

$$
\begin{gathered}
\boldsymbol{c}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \quad \mathrm{d} \boldsymbol{p}=\left[\begin{array}{c}
\mathrm{d} p_{z} \\
\mathrm{~d} p_{x}
\end{array}\right] \\
\mathrm{d} \boldsymbol{p}=J \cdot \boldsymbol{c} \\
\boldsymbol{c}=J^{-1} \cdot \mathrm{~d} \boldsymbol{p}
\end{gathered}
$$

Inverse Kinematics

Solving for c_{1} and c_{2}

Inverse Kinematics

- Problems

- Jacobian may (will!) not always be invertible
- Use pseudo inverse (SVD)
- Robust iterative method
- Jacobian is not constant

$$
J=\left[\begin{array}{ll}
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}} \\
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}}
\end{array}\right]=J(\theta)
$$

- Nonlinear optimization, but problem is (mostly) well behaved

Wednesday, November 12, 2008

Inverse Kinematics

- More complex systems
- More complex joints (prism and ball)
- More links
- Other criteria (COM or height)
- Hard constraints (joint limits)
- Multiple criteria and multiple chains

Inverse Kinematics

- Some issues

- How to pick from multiple solutions?
- Robustness when no solutions
- Contradictory solutions
- Smooth interpolation
- Interpolation aware of constraints
\qquad

Inverse Kinematics

Inverse Kinematics

Ball Joints (moving axis)

$$
\mathrm{d} \boldsymbol{p}=[\mathrm{d} \boldsymbol{r}] \cdot e^{[\boldsymbol{r}]} \cdot \boldsymbol{x}=[\mathrm{d} \boldsymbol{r}] \cdot \boldsymbol{p}=\underbrace{-[\boldsymbol{p}]} \cdot \mathrm{d} \boldsymbol{r}
$$

$$
\begin{aligned}
& \text { That is the Jacobian tor this soint } \boldsymbol{D} \\
& {[\boldsymbol{r}]=\left[\begin{array}{ccc}
0 & -r_{3} & r_{2} \\
r_{3} & 0 & -r_{1} \\
-r_{2} & r_{1} & 0
\end{array}\right]} \\
& {[\boldsymbol{r}] \cdot \boldsymbol{x}=\boldsymbol{r} \times \boldsymbol{x}}
\end{aligned}
$$

\qquad

Inverse Kinematics

Ball Joints (fixed axis)

$$
\mathrm{d} \boldsymbol{p}=(\mathrm{d} \theta)[\hat{\boldsymbol{r}}] \cdot \boldsymbol{x}=-\underbrace{-[\boldsymbol{x}] \cdot \hat{\boldsymbol{r}}} \mathrm{d} \theta
$$

That is the Jacobian for this joint

Inverse Kinematics

- Many links / joints
- Need a generic method for building Jacobian

\qquad

Inverse Kinematics

- Can't just concatenate individual matrices

\qquad

40

Inverse Kinematics

$$
\begin{aligned}
& \text { Transformation from body to world } \\
& X_{0 \leftarrow i}=\prod_{j=1}^{i} X_{(j-1) \leftarrow j}=X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdots \\
& \text { Rotation from body to world } \\
& R_{0 \leftarrow i}=\prod_{j=1}^{i} R_{(j-1) \leftarrow j}=R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdots
\end{aligned}
$$

\qquad

Inverse Kinematics

\qquad

42

Inverse Kinematics

$$
\begin{aligned}
& {\left[R _ { 0 \leftarrow 2 b } \cdot J _ { 3 } \left(\theta_{3}, \boldsymbol{p}_{3}\right.\right.} \\
& R_{0 \leftarrow 2 \mathrm{a}} \cdot J_{2 \mathrm{~b}}\left(\theta_{2 \mathrm{~b}}, X_{2 \mathrm{~b} \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right) \\
& R_{0 \leftarrow 1} \cdot J_{2 \mathrm{a}}\left(\theta_{2 \mathrm{a}}, X_{2 \mathrm{a} \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right) \\
& J_{1}\left(\theta_{1}, X_{1 \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right) \\
& \left.\boldsymbol{d}=\left[\begin{array}{c}
d_{3} \\
d_{2 \mathrm{~b}} \\
d_{2 \mathrm{a}} \\
d_{1 \mathrm{~b}}
\end{array}\right] \quad \begin{array}{c}
\text { Noti: Each row in the above } \\
\text { shouid be transposed.... }
\end{array}\right\} \\
& \left.\boldsymbol{d}=\left[\begin{array}{c}
d_{3} \\
d_{2 \mathrm{~b}} \\
d_{2 \mathrm{a}} \\
d_{1 \mathrm{~b}}
\end{array}\right] \quad \begin{array}{c}
\text { Noti: Each row in the above } \\
\text { shouid be transposed.... }
\end{array}\right\}
\end{aligned}
$$

Suggested Reading

- Advanced Animation and Rendering Techniques by Watt and Watt
- Chapters 15 and 16
\qquad

