CS-184: Computer Graphics

Lecture #23: Radiometry

Prof. James O'Brien University of California, Berkeley

V2006-F-23-1.0

Today

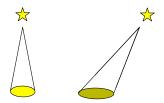
- Radiometry: measuring light
 - Local Illumination and Raytracing were discussed in an ad hoc fashion
 - Proper discussion requires proper units
 - Not just pretty pictures... but correct pictures

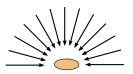
Matching Reality

Unknown

Matching Reality

Rendered


Cornell Box Comparison
Cornell Program of Computer Graphics

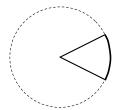

Units

- Light energy
 - Really power not energy is what we measure
 - o Joules / second (J/s) = Watts (W)
- Spectral energy density
 - o power per unit spectrum interval
 - Watts / nano-meter (W/nm)
 - Properly done as function over spectrum
 - Often just sampled for RGB
- Often we assume people know we're talking about S.E.D. and just say E...

Irradiance

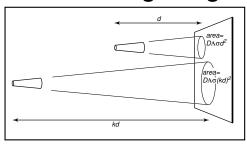
- Total light striking surface from all directions
 - o Only meaningful w.r.t. a surface
 - \circ Power per square meter (W/m²)
 - \circ Really S.E.D. per square meter ($W/m^2/nm$)
 - Not all directions sum the same because of foreshortening

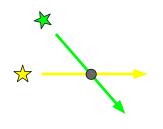
Radiant Exitance


- o Total light leaving surface over all directions
 - o Only meaningful w.r.t. a surface
 - \circ Power per square meter (W/m²)
 - \circ Really S.E.D. per square meter ($W/m^2/nm$)
 - Also called Radiosity
 - Sum over all directions ⇒ same in all directions

7

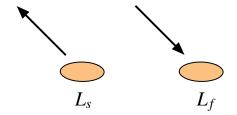
Solid Angles


- Regular angles measured in radians
 - \circ Measured by arc-length on unit circle $[0..2\pi]$
- Solid angles measured in steradians
 - \circ Measured by area on unit sphere $[0..4\pi]$
 - Not necessarily little round pieces...



Radiance

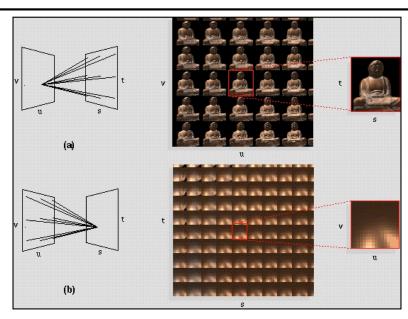
- Light energy passing though a point in space in a given direction
 - \circ Energy per steradian per square meter ($W/m^2 \, / sr$)
 - \circ S.E.D. per steradian per square meter (W/m²/sr/nm)
- Constant along straight lines in free space



9

Radiance

- Near surfaces, differentiate between
 - Radiance from the surface (surface radiance)
 - Radiance from other things (field radiance)



Light Fields

- The radiance at every point in space, direction, and frequency: 6D function
- Collapse frequency to RGB, and assume free space: 4D function
- Sample and record it over some volume

11

Light Fields

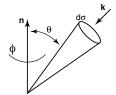
Levoy and Hanrahan, SIGGRAPH 1996

Light Fields

Levoy and Hanrahan, SIGGRAPH 1996

13

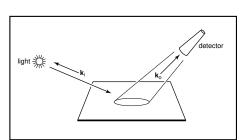
Light Fields


Michelangelo's Statue of Night From the Digital Michelangelo Project

Computing Irradiance

- Integrate incoming radiance (field radiance)
 over all direction
 - Take into account foreshortening

$$H = \int_{\Omega} L_f(\mathbf{k}) \cos(\theta) d\sigma$$


$$H = \int_0^{2\pi} \int_0^{\pi/2} L_f(\theta, \phi) \cos(\theta) \sin(\theta) d\theta d\phi$$

1:

Revisiting The BRDF

- How much light from direction A goes out in direction B
- Now we can talk about units:
 - BRDF is ratio of foreshortened field radiance to surface radiance

$$\rho(\theta_i, \theta_o) = \frac{L_s(\theta_o)}{L_f(\theta_i)\cos(\angle \hat{\mathbf{n}}\theta)}$$

We left out frequency dependance here...

Also note for perfect Lambertian reflector with constant BRDF $~\rho=1/\pi$

The Rendering Equation

 Total light going out in some direction is given by an integral over all incoming directions:

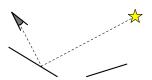
$$L_s(\mathbf{k}_o) = \int_{\Omega} \rho(\mathbf{k}_o, \mathbf{k}_i) L_f(\mathbf{k}_i) \cos(\theta) d\sigma$$

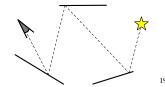
 \circ Note, this is recursive (my L_f is another's L_s)

17

The Rendering Equation

 \circ We can rewrite explicitly in terms of L_s


$$L_s(\mathbf{k}_o) = \int_{\Omega} \rho(\mathbf{k}_o, \mathbf{k}_i) L_f(\mathbf{k}_i) \cos(\theta_i) d\sigma$$


$$L_s(\mathbf{k}_o, \mathbf{x}) = \int_S \frac{\rho(\mathbf{k}_o, \mathbf{k}_i) L_s(\mathbf{x} - \mathbf{x}', \mathbf{x}') \cos(\theta_i) \cos(\angle \hat{\mathbf{n}}'(\mathbf{x} - \mathbf{x}')) \delta(\mathbf{x}, \mathbf{x}')}{||\mathbf{x} - \mathbf{x}'||^2} d\mathbf{x}'$$

Consider what ray tracing was doing....

Light Paths

- Many paths from light to eye
- Characterize by the types of bounces
 - Begin at light
 - End at eye
 - "Specular" bounces
 - "Diffuse" bounces

Light Paths

- Describe paths using strings
 - LDE, LDSE, LSE, etc.
- Describe types of paths with regular expressions

 - \circ L{D|S}S*E \longrightarrow Standard raytracing
 - ∘ L{D|S}E ← Local illumination
 - LD*E ← Radiosity method (have not talked about yet)