CS-184: Computer Graphics

Lecture \#22: Rigid Body Dynamics

Prof. James O'Brien
University of California, Berkeley

Today

- Rigid-body dynamics
- Articulated systems

A Rigid Body

- A solid object that does not deform
- Consists of infinite number of infinitesimal mass points...
- ...that share a single RB transformation
- Rotation + Translation (no shear or scale)

$$
\boldsymbol{x}^{W}=\boldsymbol{R} \cdot \boldsymbol{x}^{L}+\boldsymbol{t}
$$

- Rotation and translation vary over time
- Limit of deformable object as $k_{S} \rightarrow \infty$

A Rigid Body

In 2D:
Translation 2 "directions"
Rotation I "direction" 3 DOF Total

In 3D:
Translation 3 "directions"
Rotation 3 "direction" 6 DOF Total

Translation and rotation are decoupled
2D is boring... we'll stick to 3D from now on...

Translational Motion

Just like a point mass:

$$
\begin{aligned}
& \dot{\boldsymbol{p}}=\boldsymbol{v} \\
& \dot{\boldsymbol{v}}=\boldsymbol{a}=\boldsymbol{f} / m
\end{aligned}
$$

Note: Recall discussion on integration...

Rotational Motion

Rotation gets a bit odd, as well see...
Rotational "position" \boldsymbol{R}
Rotation matrix
Exponential map
Quaternions
Rotational velocity ω
Stored as a vector
(Also called angular velocity...)
Measured in radians / second

Rotational Motion

Kinetic energy due to rotation:
"Sum energy (from rotation) over all points in the object"

$$
\begin{aligned}
& E=\int_{\Omega} \frac{1}{2} \rho \dot{\boldsymbol{x}} \cdot \dot{\boldsymbol{x}} d u \\
& E=\int_{\Omega} \frac{1}{2} \rho([\omega \times] \boldsymbol{x}) \cdot([\omega \times] \boldsymbol{x}) d u
\end{aligned}
$$

Rotational Motion

$H_{P}=\frac{\partial E}{\partial \omega_{F}}$	momentum
	to linear momentum
	derived from rotational energy
$=$ Sae $x+(\omega \times x)$ in	$\boldsymbol{H}=\int_{0} \rho \boldsymbol{x} \times \dot{\boldsymbol{x}} d u$
$1=\int_{\text {n }} e x \times v$ du	
	$\boldsymbol{H}=\int_{\Omega} \rho \boldsymbol{x} \times(\omega \times \boldsymbol{x}) d u$
	$\boldsymbol{H}=\left(\int_{\Omega} \cdots d u\right) \boldsymbol{\omega}$
"Inertia Tensor" not identity matrix...	$\boldsymbol{H}=\boldsymbol{I} \boldsymbol{\omega}$

Inertia Tensor

$$
\mathbf{I}=\int_{\Omega} \rho\left[\begin{array}{ccc}
y^{2}+z^{2} & -x y & -x z \\
-x y & z^{2}+x^{2} & -y z \\
-x z & -y z & x^{2}+y^{2}
\end{array}\right] \mathrm{d} u
$$

See example for simple shapes at
http://scienceworld.wolfram.com/physics/Momentoflnertia.html
Can also be computed from polygon models by transforming volume integral to a surface one.
See paper/code by Brian Mirtich.

Rotational Motion

Conservation or momentum:

$$
\begin{aligned}
& \boldsymbol{H}^{W}=\boldsymbol{I}^{W} \boldsymbol{\omega}^{W} \\
& \boldsymbol{H}^{W}=\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\omega}^{W}
\end{aligned}
$$

Figure is a lie if this really is a sphere..

$$
\dot{\boldsymbol{H}}^{W}=\dot{\boldsymbol{R}} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\omega}^{W}+\boldsymbol{R} \boldsymbol{I}^{L} \dot{\boldsymbol{R}} \boldsymbol{\omega}^{W}+\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\alpha}^{W}
$$

$\dot{\boldsymbol{H}}^{W}=0$

$$
\dot{\boldsymbol{R}}=\omega \times \boldsymbol{R}
$$

$$
\boldsymbol{\alpha}^{W}=\left(\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top}\right)^{-1}\left(-\boldsymbol{\omega}^{W} \times \boldsymbol{H}^{W}\right)
$$

In other words, things wobble when they rotate.

Rotational Motion

$$
\begin{aligned}
\dot{\boldsymbol{R}} & =[\omega \times] \boldsymbol{R} \\
\dot{\boldsymbol{\omega}} & =\boldsymbol{\alpha}
\end{aligned}
$$

Figure is a lie if this really is a sphere...

$$
\begin{gathered}
\boldsymbol{\alpha}^{W}=\left(\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top}\right)^{-1}\left(\left(-\boldsymbol{\omega}^{W} \times \boldsymbol{H}^{W}\right)+\boldsymbol{\tau}\right) \\
\boldsymbol{\tau}=\boldsymbol{f} \times \boldsymbol{x}
\end{gathered}
$$

Take care when integrating rotations, they need to stay rotations.

Couples

- A force / torque pair is a couple
- Also a wrench (I think)
- Many couples are equivalent

Constraints

- Simples method is to use spring attachments
- Basically a penalty method

- Spring strength required to get good results may be unreasonably high
- There are ways to cheat in some contexts...

Constraints

- Articulation constraints
- Spring trick is an example of a full coordinate method
- Better constraint methods exist
- Reduced coordinate methods use DOFs in kinematic skeleton for simulation
- Much more complex to explain
- Collisions
- Penalty methods can also be used for collisions
- Again, better constraint methods exist

Suggested Reading

${ }^{\circ}$ Brian Mirtich, "Fast and Accurate Computation of Polyhedral Mass Properties," Journal of Graphics Tools, volume I, number 2, 1996. http://www.cs.berkeley.edu/~jfc/mirtich/papers/vollnt.ps
-Brian Mirtich and John Canny, "Impulse-based Simulation of Rigid Bodies," in Proceedings of 1995 Symposium on Interactive 3D Graphics, April 1995. http://www.cs.berkeley.edu/~jfc/mirtich/papers/ibsrb.ps
-D. Baraff. Linear-time dynamics using Lagrange multipliers. Computer Graphics Proceedings, Annual Conference Series: 137-146, 1996. http://www.pixar.com/companyinfo/research/deb/sig96.pdf
-D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. Computer Graphics Proceedings, Annual Conference Series: 23-34, 1994. http://www.pixar.com/companyinfo/research/deb/sig94.pdf

