CS-184: Computer Graphics

Lecture #21: Spring and Mass systems

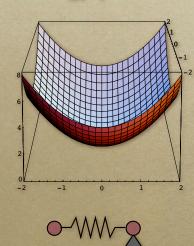
Prof. James O'Brien University of California, Berkeley

V2006-F-21-1.0

Today

- Spring and Mass systems
 - Distance springs
 - Spring dampers
 - Edge springs

A Simple Spring


· Ideal zero-length spring

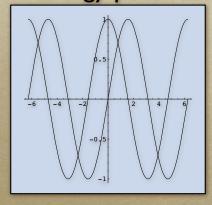
$$oldsymbol{f}_{a o b} = k_S(oldsymbol{b} - oldsymbol{a})$$
 $oldsymbol{f}_{b o a} = -oldsymbol{f}_{a o b}$

- Force pulls points together
- Strength proportional to distance

A Simple Spring

Energy potential

$$E = 1/2 k_{S}(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a})$$


$$\mathbf{f}_{a \to b} = k_{S}(\mathbf{b} - \mathbf{a})$$

$$\mathbf{f}_{b \to a} = -\mathbf{f}_{a \to b}$$

$$\mathbf{f}_{a} = -\nabla_{a}E = -\left[\frac{\partial E}{\partial a_{x}}, \frac{\partial E}{\partial a_{y}}, \frac{\partial E}{\partial a_{z}}\right]$$

A Simple Spring

Energy potential: kinetic vs elastic

$$E = 1/2 k_s(\boldsymbol{b} - \boldsymbol{a}) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

$$E = 1/2 \ m(\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}}) \cdot (\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}})$$

Non-Zero Length Springs

$$\mathbf{f}_{a \to b} = k_{s} \frac{\mathbf{b} - \mathbf{a}}{||\mathbf{b} - \mathbf{a}||} (||\mathbf{b} - \mathbf{a}|| - l)$$

$$\mathbf{Rest length}$$

$$E = k_{s} (||\mathbf{b} - \mathbf{a}|| - l)$$

$$E = k_{\mathcal{S}} (||\boldsymbol{b} - \boldsymbol{a}|| - l)^2$$

Rest length

Comments on Springs

- Springs with zero rest length are linear
- Springs with non-zero rest length are nonliner
 - Force magnitude linear w/ discplacement (from rest length)
 - Force direction is non-linear
 - \circ Singularity at $||m{b} m{a}|| = 0$

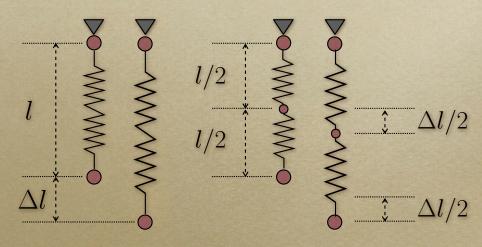
Damping

"Mass proportional" damping

$$f = -k_d \dot{a}$$

- Behaves like viscous drag on all motion
- Consider a pair of masses connected by a spring
 - How to model rusty vs oiled spring
 - Should internal damping slow group motion of the pair?
- Can help stability... up to a point

Damping

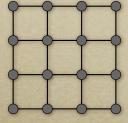

"Stiffness proportional" damping

$$\mathbf{f}_a = -k_d \frac{\mathbf{b} - \mathbf{a}}{||\mathbf{b} - \mathbf{a}||^2} (\mathbf{b} - \mathbf{a}) \cdot (\dot{\mathbf{b}} - \dot{\mathbf{a}})$$

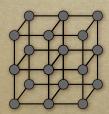
- Behaves viscous drag on change in spring length
- Consider a pair of masses connected by a spring
 - How to model rusty vs oiled spring
 - Should internal damping slow group motion of the pair?

Spring Constants

Two ways to model a single spring

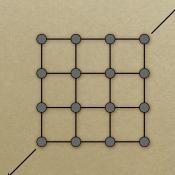

Spring Constants

- \circ Constant k_S gives inconsistent results with different discretizations
- Change in length is not what we want to measure
- Strain: change in length as fraction of original length $\epsilon = \frac{\Delta l}{l_0}$


Nice and simple for ID...

Structures from Springs

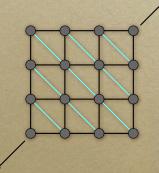
Sheets


Blocks

Others

Structures from Springs

They behave like what they are (obviously!)

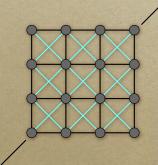


This structure will not resist shearing

This structure will not resist out-ofplane bending either...

Structures from Springs

They behave like what they are (obviously!)

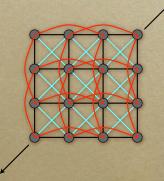


This structure will resist shearing but has anisotopic bias

This structure still will not resist outof-plane bending

Structures from Springs

They behave like what they are (obviously!)

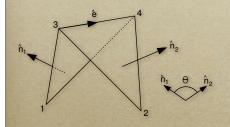


This structure will resist shearing Less bias Interference between spring sets

This structure still will not resist outof-plane bending

Structures from Springs

They behave like what they are (obviously!)



This structure will resist shearing Less bias Interference between spring sets

This structure will resist out-of-plane bending Interference between spring sets Odd behavior

How do we set spring constants?

Edge Springs

$$\begin{split} u_1 &= |E| \frac{N_1}{|N_1|^2} \qquad u_2 = |E| \frac{N_2}{|N_2|^2} \\ u_3 &= \frac{(x_1 - x_4) \cdot E}{|E|} \frac{N_1}{|N_1|^2} + \frac{(x_2 - x_4) \cdot E}{|E|} \frac{N_2}{|N_2|^2} \\ u_4 &= -\frac{(x_1 - x_3) \cdot E}{|E|} \frac{N_1}{|N_1|^2} - \frac{(x_2 - x_3) \cdot E}{|E|} \frac{N_2}{|N_2|^2} \end{split}$$

$$F_i^e = k^e \frac{|E|^2}{|N_1| + |N_2|} \sin(\theta/2) u_i$$

From Bridson et al., 2003, also see Grinspun et al., 2003

Suggested Reading

- Physically Based Modeling: Principles and Practice
 - · Andy Witkin and David Baraff
 - http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html
- Grinspun, Hirani, Desbrun, and Peter Schroder, "Discrete Shells," SCA 2003
- Bridson, Marino, and Fedkiw, "Simulation of Clothing with Folds and Wrinkles," SCA 2003
- O'Brien and Hodgins, "Graphical Modeling and Animation of Brittle Fracture," SIGGRAPH 99