CS-184: Computer Graphics

Lecture \#I9: More Motion Capture

Prof. James O'Brien
University of California, Berkeley

Today

- More Motion Capture

Motion Graphs

- Hand build motion graphs often used in games
- Significant amount of work required
- Limited transitions by design
- Motion graphs can also be built automatically

Motion Graphs

- Similarity metric
- Measurement of how similar two frames of motion are
- Based on joint angles or point positions
- Must include some measure of velocity
- Ideally independent of capture setup and skeleton
- Capture a "large" database of motions

Motion Graphs

- Compute similarity metric between all pairs of frames
- Maybe expensive
- Preprocessing step
- There may be too many good edges

Walking , frame i

Motion Graphs

- Random walks
- Start in some part of the graph and randomly make transitions
- Avoid dead ends
- Useful for "idling" behaviors
- Transitions
- Use blending algorithm we discussed

Motion graphs

- Match imposed requirements
- Start at a particular location
- End at a particular location
- Pass through particular pose
- Can be solved using dynamic programing
- Efficiency issues may require approximate solution
- Notion of "goodness" of a solution

Motion Graphs

Interactive Motion Generation From Examples

Okan Arikan
David Forsyth

Graphs with Annotations

- Place semantic labels on motions
- Example: walking, running, waving, moving-backward
- Use include match to desired annotation in goodness
- How to place labels automatically?
- Statistical classifiers

Graphs with Annotations

Motion Synthesis
from Annotations
Okan Arikan
David Forsyth
James O'Brien
U.C. Berkeley

Supplementing w/ Simulation

Pushing People Around

ID: papers_0406

This video contains audio

Arikan, Forsyth, and O'Brien, 2005?

Retargeting Examples

Footskate Cleanup

Kovar, Schreiner, Gleicher, 2002
(Excerpted)

Auto Calibration

- Skeletons constrain subjects motion
- Recorded motion retains evidence of constraints
- Magnetic system yield simple linear constraints
- Optical are nonlinear

Auto Calibration

O'Brien, Bodenheimer, Brostow, Hodgins, 2000

Auto Calibration

Auto Calibration

Skeletal Parameter
Estimation from Optical Motion Capture Data

Adam G. Kirk

James F. O'Brien David A. Forsyth

University of California - Berkeley

Perception Issues

- Motion can be perceived independent of geometry
- "Biological motion stimuli" tests
- But geometry does impact motion perception

Perception Issues

Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.
- Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.
- Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.
- Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.
- Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, Bodenheimer, Brostow, and Hodgins, GI 2000.
- Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.
- Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and Tumblin, IEEE:TVCG 1998.

