CS-184: Computer Graphics

Lecture #17: Forward and Inverse Kinematics

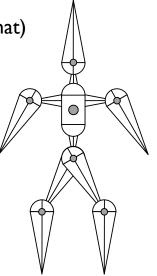
Prof. James O'Brien University of California, Berkeley

V2006-E-17-10

Today

- Forward kinematics
- Inverse kinematics
 - Pin joints
 - Ball joints
 - Prismatic joints

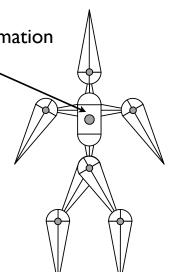
- Articulated skeleton
 - Topology (what's connected to what)
 - Geometric relations from joints
 - Independent of display geometry
 - Tree structure
 - Loop joints break "tree-ness"

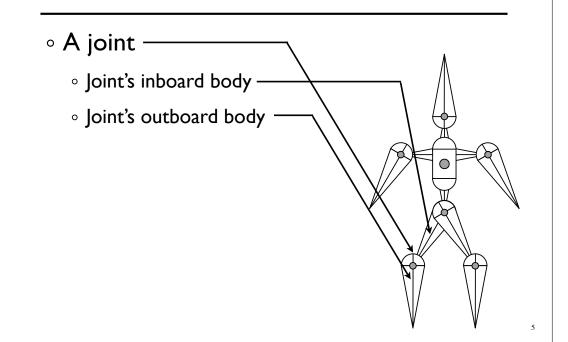


3

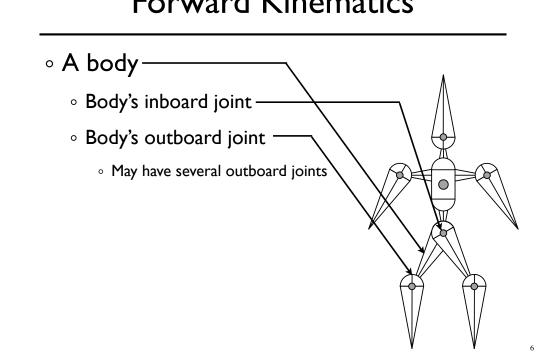
Forward Kinematics

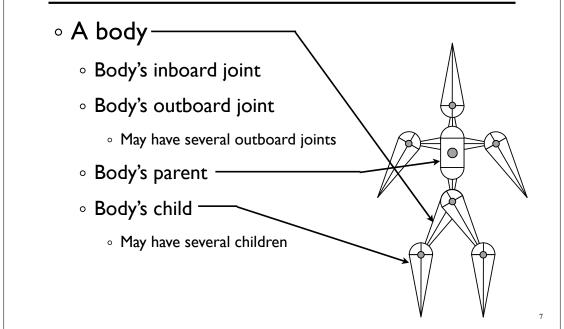
- Root body
 - Position set by "global" transformation
 - Root joint
 - Position
 - Rotation
 - Other bodies relative to root
 - Inboard toward the root
 - Outboard away from root





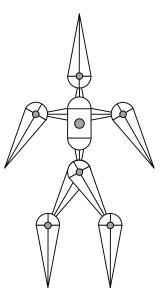
Forward Kinematics





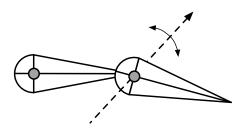
Forward Kinematics

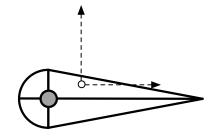
- Interior joints
 - Typically not 6 DOF joints
 - Pin rotate about one axis
 - Ball arbitrary rotation
 - Prism translation along one axis //



• Pin Joints

- Translate inboard joint to local origin
- Apply rotation about axis
- Translate origin to location of joint on outboard body

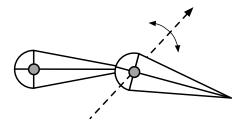


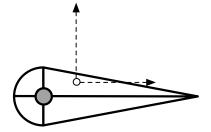


Forward Kinematics

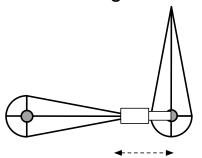
• Ball Joints

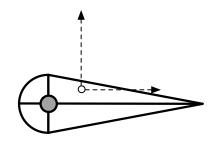
- Translate inboard joint to local origin
- Apply rotation about arbitrary axis
- $\circ\,$ Translate origin to location of joint on outboard body





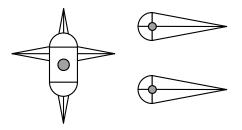
- Prismatic Joints
 - Translate inboard joint to local origin
 - Translate along axis
 - Translate origin to location of joint on outboard body



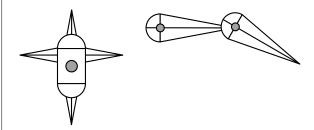


Forward Kinematics

Composite transformations up the hierarchy



Composite transformations up the hierarchy



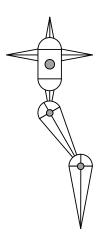
1:

Forward Kinematics

Composite transformations up the hierarchy



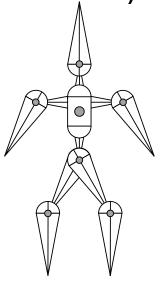
Composite transformations up the hierarchy



1:

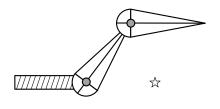
Forward Kinematics

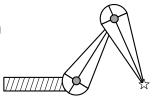
Composite transformations up the hierarchy



- Given
 - Root transformation
 - Initial configuration
 - Desired end point location
- Find

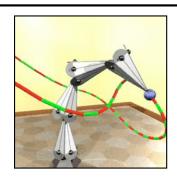
• Interior parameter settings

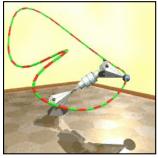




1

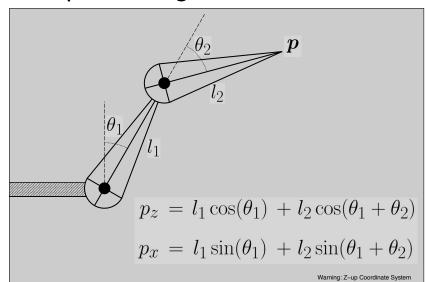
Inverse Kinematics





Egon Pasztor

A simple two segment arm in 2D



19

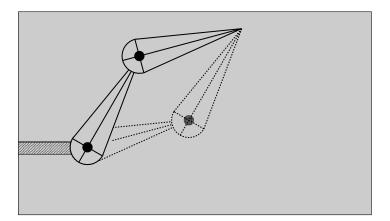
Inverse Kinematics

Direct IK: solve for the parameters

$$\theta_{2} = \cos^{-1} \left(\frac{p_{z}^{2} + p_{x}^{2} - l_{1}^{2} - l_{2}^{2}}{2l_{1}l_{2}} \right)$$

$$\theta_{1} = \frac{-p_{z}l_{2}\sin(\theta_{2}) + p_{x}(l_{1} + l_{2}\cos(\theta_{2}))}{p_{x}l_{2}\sin(\theta_{2}) + p_{z}(l_{1} + l_{2}\cos(\theta_{2}))}$$

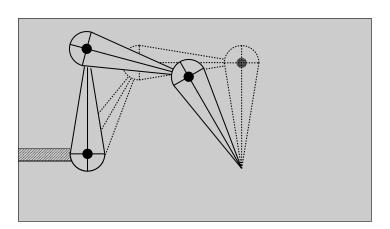
- Why is the problem hard?
 - Multiple solutions separated in configuration space



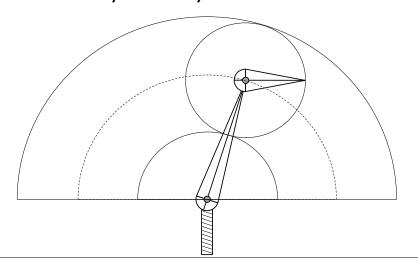
21

Inverse Kinematics

- Why is the problem hard?
 - Multiple solutions connected in configuration space



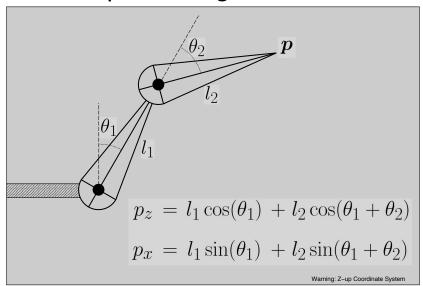
- Why is the problem hard?
 - Solutions may not always exist



Inverse Kinematics

- Numerical Solution
 - \circ Start in some initial configuration
 - Define an error metric (e.g. goal pos current pos)
 - Compute Jacobian of error w.r.t. inputs
 - Apply Newton's method (or other procedure)
 - Iterate...

• Recall simple two segment arm:



Inverse Kinematics

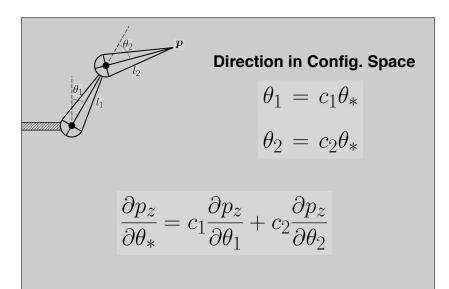
We can write of the derivatives

$$\frac{\partial p_z}{\partial \theta_1} = -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2)$$

$$\frac{\partial p_x}{\partial \theta_1} = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$$

$$\frac{\partial p_z}{\partial \theta_2} = -l_2 \sin(\theta_1 + \theta_2)$$

$$\frac{\partial p_z}{\partial \theta_2} = +l_2 \cos(\theta_1 + \theta_2)$$



2

Inverse Kinematics

The Jacobian (of p w.r.t. θ)

$$J_{ij} = \frac{\partial p_i}{\partial \theta_j}$$

Example for two segment arm

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

The Jacobian (of p w.r.t. θ)

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

$$\left| \frac{\partial \boldsymbol{p}}{\partial \theta_*} = J \cdot \begin{bmatrix} \frac{\partial \theta_1}{\partial \theta_*} \\ \frac{\partial \theta_2}{\partial \theta_*} \end{bmatrix} = J \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

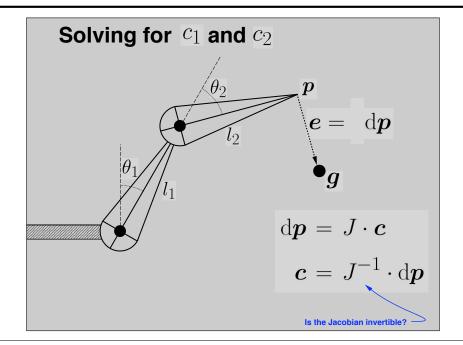
29

Inverse Kinematics

Solving for c_1 and c_2

$$oldsymbol{c} = egin{bmatrix} c_1 \ c_2 \end{bmatrix} \qquad \mathrm{d} oldsymbol{p} = egin{bmatrix} \mathrm{d} p_z \ \mathrm{d} p_x \end{bmatrix}$$

$$\mathbf{d}\boldsymbol{p} = J \cdot \boldsymbol{c}$$
$$\boldsymbol{c} = J^{-1} \cdot \mathbf{d}\boldsymbol{p}$$



Inverse Kinematics

- Problems
 - Jacobian may (will!) not always be invertible
 - Use pseudo inverse (SVD)
 - Robust iterative method
 - Jacobian is not constant

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix} = J(\theta)$$

 $\circ\,$ Nonlinear optimization, but problem is (mostly) well behaved

More complex systems

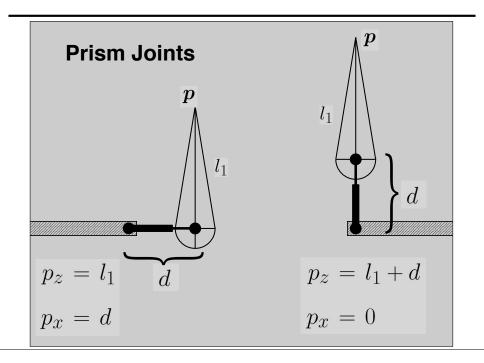
- More complex joints (prism and ball)
- More links
- Other criteria (COM or height)
- Hard constraints (joint limits)
- Multiple criteria and multiple chains

33

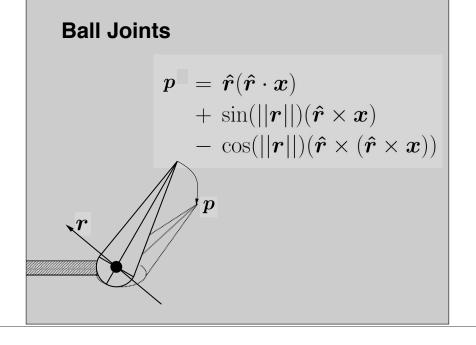
Inverse Kinematics

Some issues

- How to pick from multiple solutions?
- Robustness when no solutions
- Contradictory solutions
- Smooth interpolation
 - Interpolation aware of constraints



Inverse Kinematics



Ball Joints (moving axis)

$$\mathrm{d} oldsymbol{p} = [\mathrm{d} oldsymbol{r}] {\cdot} e^{[oldsymbol{r}]} {\cdot} oldsymbol{x} = [\mathrm{d} oldsymbol{r}] {\cdot} oldsymbol{p} = -[oldsymbol{p}] {\cdot} \mathrm{d} oldsymbol{r}$$

That is the Jacobian for this joint -

$$[\mathbf{r}] = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}$$

 $[m{r}]\cdotm{x}=m{r} imesm{x}$

3

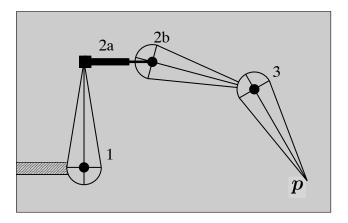
Inverse Kinematics

Ball Joints (fixed axis)

$$\mathrm{d} oldsymbol{p} = (\mathrm{d} heta)[\hat{oldsymbol{r}}] \cdot oldsymbol{x} = -[oldsymbol{x}] \cdot \hat{oldsymbol{r}} \mathrm{d} heta$$

That is the Jacobian for this joint

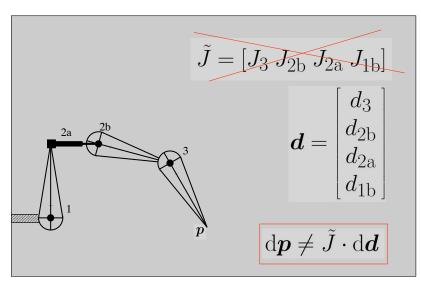
- Many links / joints
 - Need a generic method for building Jacobian



39

Inverse Kinematics

• Can't just concatenate individual matrices



Transformation from body to world

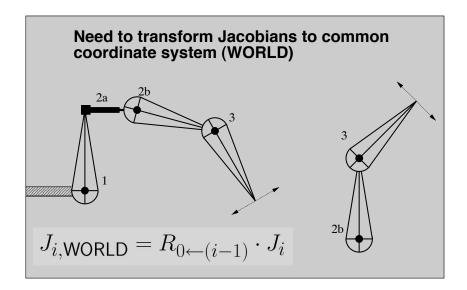
$$X_{0 \leftarrow i} = \prod_{j=1}^{i} X_{(j-1) \leftarrow j} = X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdot \dots$$

Rotation from body to world

$$R_{0 \leftarrow i} = \prod_{j=1}^{i} R_{(j-1) \leftarrow j} = R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdot \cdots$$

41

Inverse Kinematics



43

Suggested Reading

- Advanced Animation and Rendering Techniques by Watt and Watt
 - Chapters 15 and 16