
CS-184: Computer Graphics

Lecture  #25: Modeling w/ Points

Prof. James O’Brien

University of California, Berkeley

V2006F-15-1.0

2

Today

Points as a graphics primitive



3

A Thought Experiment

Laser scanners  
Millions to billions of points

Typical image
At most a few million pixels

More points than pixels...

4

“Point-Based Graphics”

Surfaces represented only by points

Maybe normals also

No topology

How can we do

Rendering

Modeling opperations

Simulation



5

Rendering

For each point draw a little “splat” 

Use associated normal for shading

Possibly apply texture

If  “splats” are small compared to 
spacing then gaps result

Ohtake, et al., SIGGRAPH 2003

Splatting too many points would
waste time

6

Rendering

“QSplat” algorithm 
Build hierarchical tree of the points

Use bounding spheres to estimate size of clusters

Render clusters based on screen size

Use cluster-normals for internal nodes

From Rusinkiewicz and Levoy, SIGGRAPH 2000. 

3 bits 16 bits2 bits14 bits

Structure

(b) File Layout for
  Circled Nodes at Left

(c) Node Layout

Tree

13 bits

(a) Bounding Sphere Hierarchy

Width of
Optional ColorPosition and radius Normal Normal Cone

Figure 2: QSplat file and node layout. (a) The tree is stored in breadth-first order (i.e., the order given by the red arrows). (b) The link from parent to child nodes
is established by a single pointer from a group of parents to the first child. The pointer is not present if all of the “parent” siblings are leaf nodes. All pointers are 32
bits. (c) A single quantized node occupies 48 bits (32 without color).

3.1 Node Layout and Quantization

The layout of each node in the bounding sphere hierarchy is shown in
Figure 2c. A node contains the location and size of a sphere relative
to its parent, a normal, the width of a cone of normals, an optional
color, and a few bits used in representing the structure of the tree. We
discuss the structure of the tree and the layout of nodes within the file
in Section 3.2.

Position and radius: The position and radius of each sphere is en-
coded relative to its parent in the bounding sphere hierarchy. In order
to save space, these quantities are quantized to 13 values. That is, the
radius of a sphere can range from 1

13 to 13
13 of the radius of its par-

ent, and the offset of the center of a sphere relative to the center of
its parent (in each of X, Y, and Z) is some multiple of 1

13 of the di-
ameter of the parent sphere. The quantization proceeds top-down, so
the position and size of a child sphere is encoded relative to the quan-
tized position of its parent; thus, quantization error does not propagate
down the mesh. In order to guarantee that the quantization process
does not introduce any holes, the quantized radius is always rounded
up to the nearest representable value that ensures that the quantized
sphere completely encloses the true sphere.

Note that not all of the 134 possible combinations of x, y, z center
offset and radius ratio are valid, since many result in child spheres that
are not enclosed by their parents. In fact, only 7621 of the possible
combinations are valid, which means that we can encode the quan-
tized position and radius using only 13 bits (using a lookup table).
For a parent sphere of radius 1, this encoding scheme gives a mean
quantization error of 0.04 in the x, y, and z components of a child
sphere, and a mean error of 0.15 in the child sphere’s radius. The er-
ror in the radius is larger than the error in position because the radius
is first increased by the quantization error in the position of the sphere
(to ensure that the quantized sphere encloses the true sphere), and is
then always rounded up to the next representable value. We could ob-
tain lower quantization error in the radius by not insisting that the
quantized sphere completely enclose the original. Doing so, how-
ever, would introduce the possibility that spheres that should touch
no longer do so after the quantization. This could produce holes in
our renderings.

The idea of representing geometric quantities such as sphere po-
sitions by encoding them incrementally, thereby essentially spreading
out the bits of the quantities among the levels in the hierarchy, rep-
resents a departure from traditional approaches to mesh compression,
which rely on encoding the differences between vertex positions along
some path along the edges of the mesh [Taubin 98]. This “hierarchical
delta coding” is, in fact, closer to the wavelet representation of geom-
etry used in the multiresolution analysis of Eck et. al. [Eck 95]. Our
space requirement of 13 bits per node appears competitive with state-
of-the-art geometric compression methods, which average 9-15 bits
per vertex depending on initial quantization of vertex positions. This
is not an entirely valid comparison, however, since traditional geomet-
ric compression methods also represent mesh connectivity (which we
discard), and since our 13 bits per node also includes sphere radius.

The position and radius of each node are decoded on-the-fly during
rendering. Because of this, our data structure is not only compact on
disk, but also requires less memory during rendering than methods
that must decompress their data before rendering.

Normals: The normal at each node is stored quantized to 14 bits.
The representable normals correspond to points on a 52 52 grid
on each of the 6 faces of a cube, warped to sample normal space more
uniformly. A lookup table is used during rendering do decode the rep-
resentable normals. In practice the use of only 52 52 6 = 16224 dif-
ferent normals (leading to a mean quantization error of approximately
0.01 radian) produces no visible artifacts in the diffuse shading com-
ponent, but some banding artifacts are visible around specular high-
lights in broad areas of low curvature. It would be possible to eliminate
these artifacts, as well as achieve better compression, by moving to an
incremental encoding of each normal relative to the normal of the
parent sphere. This would, however, increase the computational com-
plexity of the inner loop of the algorithm, resulting in a time-space
tradeoff. Unlike the range of node positions, the space of normals is
bounded, so a fixed quantization table suffices for encoding the nor-
mals of arbitrary scenes. Therefore, at this time we have chosen to use
a fixed quantization for the normals, which requires only a single table
lookup at run time. As processor speed increases, we anticipate that
the incremental quantization scheme will become more attractive.

4



7

Rendering

15-pixel cutoff
130,712 points

132 ms

10-pixel cutoff
259,975 points

215 ms

5-pixel cutoff
1,017,149 points

722 ms

1-pixel cutoff
14,835,967 points

8308 ms

Figure 1: A model of Michelangelo’s statue of St. Matthew rendered by QSplat at several levels of refinement. Rendering was done on an SGI Onyx2 with
InfiniteReality graphics, at a screen resolution of 1280x1024. The model was generated from a mesh with 127 million samples, representing a statue 2.7 meters tall
at 0.25 mm resolution. The images at right are closeups of the outlined areas at left.

3

From Rusinkiewicz and Levoy, SIGGRAPH 2000. 

8

Rendering

Figure 3: Choices for splat shape. We show a scene rendered using squares, circles, and Gaussians as splat kernels. In the top row, each image uses the same recursion
threshold of 20 pixels. Relative to squares, circles take roughly twice as long to render, and Gaussians take approximately four times as long. The Gaussians, however,
exhibit significantly less aliasing. In the bottom row, the threshold for each image is adjusted to produce the same rendering time in each case. According to this
criterion, the square kernels appear to offer the highest quality.

Figure 4: Circular vs. elliptical splats. In the left image, all splats are circular with diameter 20 pixels. In the right image, we draw elliptical splats rotated and
foreshortened depending on per-node normals. This reduces thickening and noise around silhouette edges. Recursion depth has deliberately been limited to make
the splats large enough to see in this visualization.

6

From Rusinkiewicz and Levoy, SIGGRAPH 2000. 



9

RenderingFigure 3: Choices for splat shape. We show a scene rendered using squares, circles, and Gaussians as splat kernels. In the top row, each image uses the same recursion
threshold of 20 pixels. Relative to squares, circles take roughly twice as long to render, and Gaussians take approximately four times as long. The Gaussians, however,
exhibit significantly less aliasing. In the bottom row, the threshold for each image is adjusted to produce the same rendering time in each case. According to this
criterion, the square kernels appear to offer the highest quality.

Figure 4: Circular vs. elliptical splats. In the left image, all splats are circular with diameter 20 pixels. In the right image, we draw elliptical splats rotated and
foreshortened depending on per-node normals. This reduces thickening and noise around silhouette edges. Recursion depth has deliberately been limited to make
the splats large enough to see in this visualization.

6

From Rusinkiewicz and Levoy, SIGGRAPH 2000. 

10

Rendering

(a) (b) (c)

Points Polygons – same number of primitives as (a) Polygons – same number of vertices as (a)
Same rendering time as (a) Twice the rendering time of (a)

Figure 5: Comparison of renderings using point and polygon primitives.

ing systems are most effective for objects with uniformly-sized geo-
metric detail, and in applications where it is not necessary to look at
the model at significantly higher resolution than the spacing between
samples. If the model has large, flat or subtly curved surfaces, polyg-
onal models can be more compact and faster to draw. Similarly, if it
is necessary to zoom in such that the spacing of samples is large com-
pared to pixel size, polygons offer higher visual quality, especially near
sharp edges and corners. Figure 5 shows a comparison between point-
and polygon-based renderings.

QSplat was developed with the intent of visualizing scanned mod-
els that contained significant amounts of fine detail at scales near the
scanning resolution. We used the Volumetric Range Image Processing
(VRIP) system [Curless 96] to merge raw scans into our final mod-
els, and the marching cubes algorithm [Cline 88] to extract a polyg-
onal mesh. Since the latter produces samples with a uniform spac-
ing, point rendering was well-suited for our application domain. For
scenes with large, smooth regions, we expect that QSplat would be less
effective relative to polygon-based systems. The visual quality of the
resulting models would still be good, however, if the large polygons
were diced, as in the REYES architecture [Cook 87]. For applications
containing both high-frequency detail and large flat regions, hybrid
point/polygon schemes might be appropriate.

4 Performance

As described in Section 3, the goal of interactivity dictated many de-
sign decisions for our system. In addition to these, we have optimized
our implementation in several ways in order to increase the size of the
models we can visualize.

4.1 Rendering Performance
The majority of rendering time in our system is spent in an inner loop
that traverses the hierarchy, computes the position and radius of each
node, performs visibility culling, and decides whether to draw a point
or recurse further. This inner loop was tuned to eliminate expensive
operations, especially at lower levels of the tree. For example, we do
not perform an exact perspective divide at the low levels of the tree,
switching to an approximation when the screen-space size of a node
reaches a few pixels. As a result, on average our algorithm can render
between 1.5 and 2.5 million points per second on an SGI Onyx2 once
data has been read in from disk. The exact rate varies depending on
caching effects (for example, we observe a speedup when the working

set fits in L2 cache) and how much data is culled at which levels in the
tree.

Our display rate may be compared to the 480 thousand polygons
per second (on identical hardware) reported by Hoppe for his im-
plementation of progressive meshes [Hoppe 98] or the 180 thousand
polygons per second for the ROAM system [Duchaineau 97]. For our
application, we typically use frame rates of 5-10 Hz, meaning that we
draw 200 to 300 thousand points per frame during interactive ren-
dering. Note that unlike the above two systems, QSplat makes no
explicit use of frame-to-frame coherence, such as cached lists of prim-
itives likely to be visible. QSplat’s rendering performance is summa-
rized in Figure 6.

The simplicity of our algorithm makes it well suited for implemen-
tation on low-end machines. As an extreme example, we have imple-
mented QSplat on a laptop computer with no 3D graphics hardware
(366 MHz Intel Pentium II processor, 128 MB memory). Because
rendering is performed in software, the system is fill limited. For a
typical window size of 500x500 and frame rate of 5 Hz, the imple-
mentation can traverse 250 to 400 thousand points per second, has a
40 million pixel per second fill rate, and typically draws 50 to 70 thou-
sand splats per frame. At this resolution the implementation is still
comfortably usable. Although most present desktop systems do have
3D graphics hardware, the same is not true for portable and handheld
systems, and in applications such as digital television set-top boxes.
We believe that QSplat might be well-suited for such environments.

4.2 Preprocessing Performance
Although preprocessing time is not as important as rendering time,
it is still significant for practical visualization of very large meshes.
Hoppe reports 10 hours as the preprocessing time for a progressive
mesh of 200 thousand vertices [Hoppe 97]. Luebke and Erikson
report 121 seconds as the preprocessing time for 281 thousand ver-
tices for their implementation of hierarchical dynamic simplification
[Luebke 97]. In contrast, our preprocessing time for 200 thousand
vertices is under 5 seconds (on the same hardware). Figure 6 presents
some statistics about the preprocessing time and space requirements
of the models used in this paper’s figures.

Another class of algorithms with which we can compare our pre-
processing time is algorithms for mesh simplification and decima-
tion. Although these algorithms have different goals than QSplat,
they are also commonly used for generating multiresolution represen-
tations or simplifying meshes for display. Lindstrom and Turk have
published a comparison of several recent mesh simplification meth-

7

From Rusinkiewicz and Levoy, SIGGRAPH 2000. 



11

Defining a Surface

Two related methods

Surface is a point attractor

Point-set surfaces

Implicit surface

Multi-level Partition of Unity Implicits

Implicit Moving Least-Squares

12

Point-Set Surfaces

Surface is the attractor of a repeated 
projection process

Find nearby points

Fit plane (weighted)

Project into plane

Repeat

Does it converge?

How to weight points?

face.

2 Surface definition

We begin with the now-standard definition of the MLS surface,
given in the early manuscript of Levin’s paper and used in a va-
riety of contexts as mentioned above. The MLS surface for a point
cloud P ⊆ IR3 is defined as the set of stationary points of a certain
function f : IR3→ IR3. An optional polynomial fitting step, which
we omit here, can be applied after the map f .

a

r
t

H

x = r + ta

Figure 2: The MLS energy function eMLS(!a, t) sums up the weighted distances from
the fixed input points in P to the plane with normal!a through the point x= r+!at. The
weight on an input point pi ∈ P, denoted here by its shade of grey, is a function of the
distance from pi to x.

Given an input point cloud P and a point r in a neighborhood of
P, the energy of the plane with normal !a passing through the point
x= r+ t!a, where t is the distance from p to the plane, is defined to
be:

eMLS(!a, t) = !
pi∈P

(〈!a, pi〉−〈!a, p+ t!a〉)2 θ(p+ t!a, pi)

where the weighting function θ is any monotonic function, usually
a Gaussian:

θ(x, pi) = e
−d2(x−pi)

h2

Here h is a constant scale factor, and d() is the usual Euclidean
distance between points. See Figure 2. The energy measures the
quality of the fit of the plane to P, where pi ∈ P is weighted by its
distance from x= r+ t!a.
The local minima of this energy function, over S2× IR (S2 is the

space of directions, the ordinary two-sphere), occur at a discrete set
of inputs (!a, t), each corresponding to a point x = r+ t!a. Of these,
f (r) is defined to be the x nearest to r. The stationary points of this
map f form the MLS surface.
We can get some additional insight into this energy function by

restating it using different notation. First, we write it as a function
of !a and the point x = r+ t!a, rather than as a function of !a and
t. Second, we notice that the plane and the weights determined
by the parameters (x,!a) are the same as those determined by the
parameters (x,−!a), so we can write eMLS as a function of x and an
unoriented direction vector a. This gives us:

eMLS(x,a) = !
pi∈P

(〈a, pi〉−〈a,x〉)2 θ(x, pi)

(although the inner product is not defined for unoriented direction
vectors, we use this notation since we can evaluate the function
using either !a or −!a and get the same result). In this new form, the
domain of the function is now IR3× IP2, where IP2 (the projective
two-sphere) is the space of unoriented directions. The new notation
makes it clear that eMLS(x,a) is independent of r, which will help
us find a non-algorithmic characterization of the points of the MLS
surface in the following section.

The procedure for computing f (r), described above, minimizes
eMLS(!a, t) over the three-dimensional domain S2× IR. Therefore
using the new notation we do not minimize over all of the five-
dimensional domain IR3× IP2, but over a three-dimensional subset:
the set Jr of values (x,a) such that x = r+ t!a for some t ∈ IR and
orientation !a of a. This means that in Jr, every point x ∈ IR3 other
than r is paired with the direction a of the line through x and r; the
singular point r is paired with all directions a. Different values of r
produce different values of f (r) because each choice of r implies a
different domain Jr over which eMLS is minimized.

3 Explicit definition and generalization

Now we want to give an explicit version of the MLS surface defini-
tion. We begin by defining an (unoriented) vector field:

n(x) = argmina eMLS(x,a) (1)

This is the normal to the plane through x ∈ IR3 which is a local
best-fit to the point cloud P. Since fixing x fixes the weights, the
energy function is a quadratic function of a and the minimal direc-
tion is usually unique. It can be found efficiently as the smallest
eigenvalue of a three-by-three matrix [Alexa et al. 2003]. Where
there are two or three smallest eigenvalues, n is not well-defined.
The sets of points with multiple smallest eigenvalues form surfaces
which divide space into regions, within each of which n is a smooth
function of x.

S

x

x

n(x)

Figure 3: To see if a point x belongs to the MLS surface, we consider eMLS on the
line "x,n(x). Keeping n(x) fixed, we vary y along the line. If y = x is a local minimum

of eMLS(y,n(x)), then x belongs to the MLS surface. Using different functions for n(x)
and e(x,a) gives variants of the construction, which we call extremal surfaces.

Now we give an explicit characterization of the MLS surface;
in effect, we describe how to recognize whether a point x ∈ IR3
belongs to the MLS surface. This characterization is illustrated in
Figure 3. Let "x,n(x) be the line through x with direction n(x). We
adopt the notation arglocalminy to refer to the set of inputs y pro-
ducing local minima of a function of variable y.

Claim 1 The MLS surface consists of the points x for which n(x) is
well-defined, and for which

x ∈ arglocalminy∈"x,n(x)eMLS(y,n(x))

Proof : First we argue that every x on the MLS surface has this
property. Such a point corresponds to a pair (x,a) which is a lo-
cal minimum in its own set Jx. The set A = {(x,a)}, where x is
fixed and a ranges over all possible directions, is a subset of Jx, so
(x,n(x)) is a local minimum in A. Since n(x) is well defined, n(x) is
the unique global minimum in A and we have a = n(x). The set of
pairs L = {(y,n(x)) | y ∈ "x,n(x)} is also a subset of Jx, so (x,n(x))
is also a local minimum in L.
Now we want to show that any x which has the property in the

Claim belongs to the MLS surface. We need therefore to show that
(x,n(x)) is a local minimum of eMLS in the set Jx.

From Amenta and Kil, SIGGRAPH 2004. 



13

Point-Set Surfaces

14

Point-Set Surfaces

Consider any direction m != n(x). Since n(x) is defined as the
direction producing the unique minimum over all pairs (x,a), we
have eMLS(x,m) > eMLS(x,n(x)). The function eMLS is continuous,
so there is some distance ε(m) such that for all y ∈ !x,m with
d(x,y) < ε(m), we have eMLS(y,m) > eMLS(x,n(x)). Also there is
some ε(n(x)) such that for all y ∈ !x,n(x) with d(x,y) < ε(n(x)),
eMLS(y,n(x)) > eMLS(x,n(x)). Let ε be the minimum of ε(a) over
all directions in a ∈ IP2. Then (x,n(x)) is a local minimum in the
subset of Jx consisting of pairs (y,a) with d(x,y) < ε . !

We can generalize the MLS construction by considering alterna-
tives for the two functions n and eMLS. We can use any function
n(x) to assign directions to points in space, and any function e(x,a)
to specify the energy of elements of IR3× IP2. There is no reason
why the definition of n has to be related to the definition of e, as it
is for the MLS surface. We define an extremal surface as follows.

Definition 1 For any functions n : IR3→ IP2 and e : IR3× IP2→ IR,
let

S= {x | x ∈ arglocalminy∈!x,n(x) e(y,n(x))}

be the extremal surface of n and e.

4 Extremal surface literature

Not surprisingly, the idea of extremal surfaces is not new. Guy
and Medioni [1997] and Medioni, Lee and Tang [2000] defined ex-
tremal surfaces, using functions n : IR3 → IP2 and s : IR3 → IR, to
define the set {x | x ∈ arglocalminy∈!x,n(x) s(y)}. Our definition is a
a little more general than theirs in that their function s(x) = e(x,a)
does not require the parameter a. In a series of papers, they used
extremal surfaces for (among other things) surface reconstruction
from very noisy point clouds. Their functions n and s are different
from the MLS energy function, and require completely different
computational techniques. They represent n and s simultaneously
with a tensor, and use tensor operations to smooth them. This tensor
voting is performed on a voxel grid. The extremal surface is then
extracted from the grid with the marching cubes algorithm. Most
of their work focuses on the difficult problem of designing of good
tensor functions.
Edelsbrunner and Harer [to appear] define Jacobi surfaces in IRd .

To keep this discussion simple, we give their definition for the spe-
cial case of two-surfaces in IR3. The input is three Morse functions
f1(x), f2(x), f3(x) (intuitively, a Morse function is one whose iso-
surfaces are generic; it is everywhere twice-differentiable, its Hes-
sian matrix is everywhere non-singular, and no two critical points
have the same function value). Jacobi surfaces are symmetric with
respect to the order of the input functions, so that for instance if we
exchange f1 and f3, we get the same Jacobi surface.
The intersections of the level sets of f1 and f2 divide IR

3 into a
family of curves. The Jacobi surface S is defined as the set of critical
points of f3 over each of these curves. Every point x ∈ IR3 belongs
to one such curve, and we let n(x) be the tangent direction. Every
critical point q of f3 on the curve containing x is a critical point of f3
on the tangent line !x,n(x) as well, so this is similar to an extremal
surface with f3(x) = s(x). The main difference is that all critical
points, rather than just minima, are taken. Another difference is that
points at which n is undefined (because the intersection of the level
sets consists of a single point instead of a curve) are included in the
Jacobi surface (this is related to the symmetry of the definition).
With these points included as part of the surface, it seems

likely that these singularities in the vector field n might cause non-
manifold singularities in the surface S, for instance points at which
multiple sheets of surface come together. Edelsbrunner and Harer
show, however, that a Jacobi two-surface in IR3 is generically a

manifold. This does not extend to higher dimensions; for instance a
Jacobi 3-surface in IR4 can be generically non-manifold, indeed at
the singular points at which n would be undefined. They prove that

Jacobi k-surfaces in IRd , for d > 2k− 2, are manifolds, and they
give a robust algorithm for extracting Jacobi surfaces from func-
tions given on a tetrahedral mesh.

5 Implicit and extremal surfaces

Adamson and Alexa [2003a] defined an implicit surface which they
used for ray-tracing instead of the MLS surface. Their surface has
the form

g(x) ="n(x) · (a(x)− x) = 0

where"n(x) is an oriented vector field and a(x) is the center of mass
of the input point cloud P as weighted by x.

Figure 4: Streamlines (red) of a vector field n(x), and iso-contours (blue) of an
energy function s(x). The heavy blue line is the extremal surface determined by n and
s, running neatly along the “valley” in the energy landscape and passing through the

minima of s. The streamlines of n and the iso-contours of s are tangent at the surface

points. Here n and s were computed using the point-set surface for surfels introduced

in Section 7; the input surfels are shown as black diamonds, with the long diagonal

pointed in the direction of the surfel normal.

Figure 5: The red streamlines indicate a constant vector field "n. The blue iso-
contours show an energy function s again determined by the set of input surfels (black

diamonds), here meeting at a sharp corner. There are two valleys in the energy land-

scape meeting to form a third valley. The implicit surface g(x) = "n(x) ·!s(x) = 0

includes both minima in the extremal surface definition (heavy blue curve) and also

maxima (green curve). The extremal surface (heavy blue curves) appears to have a

junction but is actually composed of two manifold components. Using the best-fitting

plane to determine the vector field "n, as defined for the MLS surface in Equation 1,
produces a similar structure near the sharp corner, but the somewhat larger picture is

complicated by singularities in the vector field.

They prove that g(x) is a smooth function on any domain on
which "n is well-defined everywhere, and therefore that the surface

From Amenta and Kil, SIGGRAPH 2004. 

Does this give us a good surface?

New “robust” methods existfor sharp features



15

Point-Set Surfaces

Some examplesCHAPTER 2. POINT SET SURFACES 10

Figure 2.1: A point set representing a statue of an angel. The density of points and, thus,

the accuracy of the shape representation are changing (intentionally) along the vertical

direction.

The technique that defines and resamples SP provides the following important proper-

ties:

Smooth manifold: The surface defined by the point set is guaranteed to be a 2-manifold

and C∞ smooth, given that the points are sufficiently close to the surface being rep-
resented.

Bounded sampling error: Let SR be defined by the set of representation points ri ⊂ SP .

The representation has bounded error ε, if d(SP , SR) < ε, where d(·, ·) is the Haus-
dorff distance.

Local computation: For computing a point on the surface only a local neighborhood of

that point is required. This results in a small memory footprint, which depends only

on the anticipated feature size and not the number of points (in contrast to several

other implicit surface definitions, e.g. those based on radial basis functions).

CHAPTER 4. BILATERAL MESH DENOISING 54

Figure 4.2: The shrinkage problem. On the left the model of Max Planck with heavily

added random noise. In the middle the denoised model after four iterations of our algorithm

without volume preservation. The Max-Planck model is courtesy of Christian Rössl from

Max Planck Insitut für Informatik.

approach is to preserve the volume of the object as suggested by Desbrun et al. [Desbrun

et al. 1999].

Our algorithm, also shrinks the object. This can be observed when smoothing a vertex

that is a part of a curved patch; the offset of the vertex approaches the average of the offsets

in its neighborhood. Therefore, we follow the volume preservation technique.

Vertex-drift is caused by algorithms that change the position of the vertices along the

tangent plane as well as the normal direction. The result is an increase in the irregularity of

the mesh. Our algorithm moves vertices along the normal direction, and so, no vertex-drift

occurs.

4.2.4 Handling boundaries

Often meshes, in particular scanned data sets, are not closed. There are two aspects to note

here: first, the shape of the boundary curve, which is the related problem of “mesh fairing”.

Second, is that a filter is defined for a neighborhood of a point. However for boundary

points, part of the neighborhood is not defined. One common solution to this problem is

to define a virtual neighborhood by reflecting vertices over edges. Our filter inherently

handles boundaries by treating them as sharp edges with virtual vertices at infinity. The

similarity weight sets the weight of virtual vertices to zero, and thus, the normalization of

the entire filter causes boundaries to be handled correctly.

From Fleichman, Thesis, 2003.

Note shrinkage

16

Implicit Moving Lest-Squares

Define a scalar function that is zero passing 
through all the points

Sample 

Points

Normal 

vectors

From Shen, et al., SIGGRAPH, 2004.



17

Implicit Moving Lest-Squares

From Shen, et al., SIGGRAPH, 2004.

Function is zero on boundary
Decreases in outward direction

18

Moving Least-Square Interpolation

Standard Least Square



19

Moving Least-Square Interpolation

Moving Least Square

20

Moving Least-Square Interpolation

Least Square Moving Least Square

Interpolating

Approximating



21

Interpolating Functions

22

Interpolating Functions



23

Implicit Moving Lest-Squares

Sample 

Points

Normal 

vectors

From Shen, et al., SIGGRAPH, 2004.

24

Implicit Moving Lest-Squares

From Shen, et al., SIGGRAPH, 2004.

Sample 

Points

Normal 

vectors

Proof of good behavior in
Kolluri SODA 2005



25

From Shen, et al., SIGGRAPH, 2004.
(Actually based on polygon constraints... but same idea.)

26

From Shen, et al., SIGGRAPH, 2004.
(Actually based on polygon constraints... but same idea.)



27

From Shen, et al., SIGGRAPH, 2004.
(Actually based on polygon constraints... but same idea.)

28

Partition of Unity Method

Ohtake, et al., SIGGRAPH 2003

Partition of Unity is a special case of Moving Least-Squares 



29

Partition of Unity Method

Ohtake, et al., SIGGRAPH 2003

Multi-level Partition of Unity Implicits

Yutaka Ohtake

MPI Informatik

Alexander Belyaev ∗

MPI Informatik

Marc Alexa

TU Darmstadt

Greg Turk

Georgia Tech

Hans-Peter Seidel

MPI Informatik

Abstract
We present a new shape representation, the multi-level partition of
unity implicit surface, that allows us to construct surface models
from very large sets of points. There are three key ingredients to our
approach: 1) piecewise quadratic functions that capture the local
shape of the surface, 2) weighting functions (the partitions of unity)
that blend together these local shape functions, and 3) an octree
subdivision method that adapts to variations in the complexity of
the local shape.

Our approach gives us considerable flexibility in the choice of
local shape functions, and in particular we can accurately represent
sharp features such as edges and corners by selecting appropriate
shape functions. An error-controlled subdivision leads to an adap-
tive approximation whose time and memory consumption depends
on the required accuracy. Due to the separation of local approxima-
tion and local blending, the representation is not global and can be
created and evaluated rapidly. Because our surfaces are described
using implicit functions, operations such as shape blending, offsets,
deformations and CSG are simple to perform.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: partition of unity approximation, error-controlled sub-
division, adaptive distance field approximation, implicit modeling.

1 Introduction
There are many applications that rely on building accurate models
of real-world objects such as sculptures, damaged machine parts,
archaeological artifacts, and terrain. Techniques for digitizing ob-
jects include laser rangefinding, mechanical touch probes, and com-
puter vision techniques such as depth from stereo. Some of these
techniques can yield millions of 3D point locations on the object
that is being digitized. Once these points have been collected, it
is a non-trivial task to build a surface representation that is faithful
to the collected data. Some of the desirable properties of a sur-
face reconstruction method include speed, low memory overhead,
the creation of surfaces that approximate rather than interpolate the
data (when noise or mis-registration is present), faithful reproduc-
tion of sharp features, and robustness in the presence of holes and
low sampling density.

In this paper we introduce a new class of implicit models that
was specifically designed to meet these requirements for rapidly
and accurately creating surfaces from large collections of points.
We use the name Multi-level Partition of Unity implicits (MPU)

∗ Currently with the University of Aizu, Aizu-Wakamatsu, Japan.

Figure 1: The Stanford Lucy, consisting of 14 million points, is reconstructed as an

MPU implicit with a 0.01% max-norm approximation accuracy; the left part of the

model is colored according to the subdivision level which increases from blue to red.

The four models in the back are reconstructed from the point set with increasing ap-

proximation error.

because at the heart of our method is a set of weighting functions
that sum to one at all points in the domain. Given a set of points
P = {p1, . . . ,pN} sampled from a surface in R3, an MPU implicit
f : R3 → R provides an adaptive error-controlled approximation of
the signed distance function from the surface. The approximation
is accurate near the surface and rough far from the surface. The sur-
face itself is then approximated by the zero level set of the distance
function. We assume that the points of P are equipped with unit
normalsN = {n1, . . . ,nN} that indicate the surface orientation. In
practice, these normals can be estimated either from initial scans
during the shape acquisition phase or by local least-squares fitting
toP . We also consider the case when the surface is approximated
by a mesh andP is the set of mesh vertices. Then the normalsN
are the mesh vertex normals.

To create our implicit representation, we start with a box that
bounds the point set and create an octree-based subdivision of this
box. At each cell of the octree, a piecewise quadratic function (the
local shape function) is created that fits the points in the cell. These
shape functions act much like a signed distance function, and take
on the value zero near the data points and become positive (inside)

30

Editing Operations

Implicit function can be

Combined w/ booleans

Warped

Offset

Composed

And more...
Figure 8: CSG operations applied on MPU implicits. Left: sphere tracing of the sub-

traction of two MPU approximations. Right: boolean subtraction and twisting opera-

tions are applied to interpolating MPU implicits.

Figure 9: Reconstruction from a scattered point dataset with non-uniform density of

points.

found that if several range scans overlap, better results are obtained
if we take into account per-point measurement confidences during
the reconstruction process. If we treat all points the same, artifacts
can arise. If the accuracy threshold (7) is small, the MPU implicit
approximating the scan points can have wrinkles in the overlapping
regions. On the other hand, if (7) is not small enough, the MPU
implicit does not capture the fine geometric details of the scanned
model. In practice, a given position on the object can be measured
more accurately from some scanning directions than from others.
This notion of using confidence during surface reconstruction was
advocated in [Turk and Levoy 1994; Curless and Levoy 1996].
Consider a collection of points from range data. Assume that

each point pi is assigned a confidence weight ci, ci ∈ [0,1], that
were computed based on scanning information according to the
rules suggested in [Curless n. d.]. Now the MPU reconstruction
process described in previous sections is enhanced by the modifica-
tions given below.

• For a better estimation of local shape functionQ(x), if the sum
of the confidence measures of the points inside the ball is less
than Nmin then the radius growth rule (6) is applied repeatedly
until the sum is above this threshold.

• Instead of (7), a weighted accuracy measure is used:
! =maxciQ(pi)/|!Q(pi)|.

• The unit normal vector n of the base plane (u,v) used to fit the
bivariate quadratic polynomial (12) is obtained by averaging
the neighboring normals with weights ciw(pi).

• Weights
{
ciw(pi)

}
are used in (13) and (11) instead of{

w(pi)
}
.

• The normals in (10) are taken with the confidence weights
assigned to their corresponding points.

Figure 10 demonstrates the MPU reconstruction of the Stanford

Figure 10: Reconstruction of Stanford bunny from range data. Top left: bunny scan

data is rendered as a cloud of points, (all ten original range scans are used); defects

caused by low accuracy of some points and normals are clearly visible. Top middle: a

side range image of bunny is colored according to the confidence measure. Top right:

bunny is reconstructed as an MPU implicit. Bottom left: only six range scans of the

bunny scan data are rendered (an example of incomplete data). Bottom right: an MPU

implicit bunny from six scans.

f = 0.025 f = 0 f = −0.025

f = −0.075, ! = 0.75 f = −0.075, ! = 1.0

Figure 11: Offsetting of a knot model. The distance function to the knot is approxi-

mated by w = f (x,y,z). The first four models were generated with ! = 0.75. For the
last model ! = 1 was used and a higher quality offsetting was produced.

bunny from the original range scans. In one case we have used
only six scans, and in the other case we have used the full ten range
scans. Notice the ability of the MPU method to repair missed data.

Function-based shape modeling operations. Using MPU
implicits allow us to extend the power of function-based shape
modeling operations [Bloomenthal et al. 1997] to point set surfaces.
Given several MPU functions defined over the same bounding box
and having possibly different octree structures, at each point of the
box we evaluate the value of the result of applying functional oper-
ations to the functions. Then the level sets of the resulting function
are visualized via a polygonization or ray tracing.

An example of a CSG operation applied to two large and com-
plex point set surfaces was already demonstrated in Figure 8. Re-
sults of offsetting, smooth blending, morphing, and twisting opera-
tions [HyperFun: F-rep Library n. d.], [Pasko and Savchenko 1994]
are shown in Figures 11, 12, 13, 14 and the right image of Figure 8.
In particular, Figures 13 and 14 demonstrate a linear morphing of
two implicit models.1

1The linear morphing of implicit models w= f (x,y,z) and w= g(x,y,z) is an im-
plicit model defined by w= (1− t) f (x,y,z)+ tg(x,y,z).

Ohtake, et al., SIGGRAPH 2003



31

Editing Operations

Implicit function can be

Combined w/ booleans

Warped

Offset

Composed

And more...

Ohtake, et al., SIGGRAPH 2003

Figure 8: CSG operations applied on MPU implicits. Left: sphere tracing of the sub-

traction of two MPU approximations. Right: boolean subtraction and twisting opera-

tions are applied to interpolating MPU implicits.

Figure 9: Reconstruction from a scattered point dataset with non-uniform density of

points.

found that if several range scans overlap, better results are obtained
if we take into account per-point measurement confidences during
the reconstruction process. If we treat all points the same, artifacts
can arise. If the accuracy threshold (7) is small, the MPU implicit
approximating the scan points can have wrinkles in the overlapping
regions. On the other hand, if (7) is not small enough, the MPU
implicit does not capture the fine geometric details of the scanned
model. In practice, a given position on the object can be measured
more accurately from some scanning directions than from others.
This notion of using confidence during surface reconstruction was
advocated in [Turk and Levoy 1994; Curless and Levoy 1996].
Consider a collection of points from range data. Assume that

each point pi is assigned a confidence weight ci, ci ∈ [0,1], that
were computed based on scanning information according to the
rules suggested in [Curless n. d.]. Now the MPU reconstruction
process described in previous sections is enhanced by the modifica-
tions given below.

• For a better estimation of local shape functionQ(x), if the sum
of the confidence measures of the points inside the ball is less
than Nmin then the radius growth rule (6) is applied repeatedly
until the sum is above this threshold.

• Instead of (7), a weighted accuracy measure is used:
! =maxciQ(pi)/|!Q(pi)|.

• The unit normal vector n of the base plane (u,v) used to fit the
bivariate quadratic polynomial (12) is obtained by averaging
the neighboring normals with weights ciw(pi).

• Weights
{
ciw(pi)

}
are used in (13) and (11) instead of{

w(pi)
}
.

• The normals in (10) are taken with the confidence weights
assigned to their corresponding points.

Figure 10 demonstrates the MPU reconstruction of the Stanford

Figure 10: Reconstruction of Stanford bunny from range data. Top left: bunny scan

data is rendered as a cloud of points, (all ten original range scans are used); defects

caused by low accuracy of some points and normals are clearly visible. Top middle: a

side range image of bunny is colored according to the confidence measure. Top right:

bunny is reconstructed as an MPU implicit. Bottom left: only six range scans of the

bunny scan data are rendered (an example of incomplete data). Bottom right: an MPU

implicit bunny from six scans.

f = 0.025 f = 0 f = −0.025

f = −0.075, ! = 0.75 f = −0.075, ! = 1.0

Figure 11: Offsetting of a knot model. The distance function to the knot is approxi-

mated by w = f (x,y,z). The first four models were generated with ! = 0.75. For the
last model ! = 1 was used and a higher quality offsetting was produced.

bunny from the original range scans. In one case we have used
only six scans, and in the other case we have used the full ten range
scans. Notice the ability of the MPU method to repair missed data.

Function-based shape modeling operations. Using MPU
implicits allow us to extend the power of function-based shape
modeling operations [Bloomenthal et al. 1997] to point set surfaces.
Given several MPU functions defined over the same bounding box
and having possibly different octree structures, at each point of the
box we evaluate the value of the result of applying functional oper-
ations to the functions. Then the level sets of the resulting function
are visualized via a polygonization or ray tracing.

An example of a CSG operation applied to two large and com-
plex point set surfaces was already demonstrated in Figure 8. Re-
sults of offsetting, smooth blending, morphing, and twisting opera-
tions [HyperFun: F-rep Library n. d.], [Pasko and Savchenko 1994]
are shown in Figures 11, 12, 13, 14 and the right image of Figure 8.
In particular, Figures 13 and 14 demonstrate a linear morphing of
two implicit models.1

1The linear morphing of implicit models w= f (x,y,z) and w= g(x,y,z) is an im-
plicit model defined by w= (1− t) f (x,y,z)+ tg(x,y,z).

32

Implicit function can be

Combined w/ booleans

Warped

Offset

Composed

And more...

Editing Operations

Ohtake, et al., SIGGRAPH 2003

Figure 12: Left: Smooth blending of the Stanford bunny and Cyberware Igea mod-

els. Right: offsetting of the Stanford dragon model; f = 0.0075 (top) and f = −0.01
(bottom); ! = 0.75.

Figure 13: Linear blending of octahedron and cube.

7 Discussion
This paper describes a new implicit surface representation based on
local shape functions, partitions of unity, and an octree hierarchy.
Strengths of the Multi-Level Partition of Unity formulation include:

• Fast surface reconstruction and rendering.
• Representation of sharp features.
• Reconstruction from incomplete data.
• Choice of either approximation or interpolation of the data
and the ability to adaptively vary the approximation accuracy.

Given a point set model processed by the MPUmethod with a spec-
ified accuracy, the computational time and memory usage depends
on the geometric complexity of the model: the higher the geomet-
ric complexity, the deeper the octree is subdivided. This is clearly
demonstrated by Figure 1 where the reconstruction of fine features
requires a deeper subdivision.

Table 1 presents RAM memory usage and computational time
measurements for simultaneous generating and polygonizing vari-
ous point set models. Note that our method is quite fast. Our exper-
iments with state-of-the-art RBF-based 3D surface reconstruction
techniques such as FastRBF [Carr et al. 2001] and others suggest
that the MPU method is considerably faster than these other tech-
niques. 2

Model Number Relative Peak Number of Comp.

of points error RAM triangles time

Bunny 34,611 2.5×10−3 34MB 91,104 0:07

Bunny scans 362,272 1.0×10−3 110MB 219,676 1:46

Dragon 433,375 8.0×10−4 195MB 819,704 1:39

Buddha 543,625 0.0 442MB 648,332 6:53

David (2mm) 4,124,454 1.0×10−4 810MB 1,296,522 10:33

Table 1: Memory and computational time measurements for genera-

tion + polygonization of MPU implicits for various point set models. Computations

were performed on a 1.6GHz Mobile Pentium 4 with 1GB RAM, and timings are

listed as minutes:seconds.

2 Comparing the results of Table 1 with those of Table 2 in [Carr et al. 2001] one

can find that the MPU method is 20-30 times faster than the FastRBF technique [Carr

et al. 2001].

Figure 14: Linear morphing of two head models approximated by MPU implicits, Max

Planck Head and Head of Michelangelo’s David.

Notice that processing time for the Buddha model is more than
three times longer then that for the dragon model which has a sim-
ilar size. This is because we reconstruct the Buddha by the MPU
interpolation which requires a deeper subdivision and wider support
for the corresponding partition of unity functions.

Because of its local nature, the MPU method is more sensi-
tive to the quality of input data, especially the field of normals,
to compare with the approximation and interpolation techniques
based on globally-supported RBFs [Carr et al. 2001; Turk and
O’Brien 2002]. Nevertheless, according to our experiments, the
MPU method is sufficient for accurate shape reconstruction from
a wide variety of data sets. The parameters in our current imple-
mentation of the MPU approach are adjusted for processing typical
outputs of laser scanner devices. We believe that the parameter
modifications needed for different classes of input are fairly intu-
itive in order to handle scattered data of lower (higher) quality at
the expense of lower (higher) computational speed.

Unlike the crust approach [Amenta et al. 1998], theMPUmethod
is not supported by rigorous results guaranteeing correct recon-
struction of input data satisfying certain properties described math-
ematically. It is a price we pay for a high speed of our method.

We would like also to stress here that our method is not an RBF
technique. RBF is a global approximation/interpolation method be-
cause of its global variational nature. Our method is a local one. We
make use of two functions, the partition-of-unity weights and the
local piecewise quadratic approximation functions, which is differ-
ent than the single function used by an RBF approach. This two-
function approach gives benefits such as sharp feature reconstruc-
tion that, to date, have not been possible using RBFs.

Smoothness properties of the MPU implicits are determined by
those of weight functions (3). Choosing smoother weight functions
will produce smoother MPU implicits.

Similar to other implicit function shape representation schemes,
theMPU implicits are not capable of representing correctly surfaces
with boundaries.

We see a number of opportunities to improve our approach.
Other estimation of the distance function might be beneficial. The
distance function is a ruled surface with singularities, therefore us-
ing quadratic functions to approximate the distance function is not
optimal. A richer library of local shape approximations could be
generated in order to reconstruct accurately more complex sharp
features. Finally, the MPU approach should be well suited to an
out-of-core implementation due to the local nature of the weighting
functions.



33

Smoothing

Simple Smoothing

Adjustment Smoothing

From Shen, et al., SIGGRAPH, 2004.

34

Point-Based Simulation

MLS originated in mechanics literature

Natural use in graphics for animation

M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross and M. Alexa / Point Based Animation of Elastic, Plastic and Melting Objects

Figure 9: A melting model of Max Planck flows through a funnel into the Igea casting mold.

Figure 10: A melting model of Igea which splits, merges and solidifies.

Figure 11: Animating a detailed octopus.

Figure 12: Melting and solidification with topological changes.

c© The Eurographics Association 2004.

From Mueller, et al., SCA, 2004.



35

Point-Based Simulation

From Mueller, et al., SCA, 2004.

36

Suggested Reading

“QSplat: A Multiresolution Point Rendering System for Large Meshes” by Szymon Rusinkiewicz 
and Marc Levoy, SIGGRAPH 2000.

“Multi-level Partition of Unity Implicits” by Yutaka Ohtake and colleagues, SIGGRAPH 2003.

“Point Based Animation of Elastic, Plastic and Melting Objects” by Mueller and colleagues, SCA 
2004.

“Defining point-set surfaces” by Nina Amenta and Yong Joo Kil, SIGGRAPH 2004.

"Interpolating  and Approximating Implicit Surfaces from Polygon Soup" by Chen Shen, James 
O’Brien, and Jonathan Shewchuk, SIGGRAPH 2004.


