CS-184: Computer Graphics

Lecture \#25: Modeling w/ Points

Prof. James O’Brien
University of California, Berkeley

Today

- Points as a graphics primitive

A Thought Experiment

- Laser scanners
- Millions to billions of points
- Typical image
- At most a few million pixels
- More points than pixels...

"Point-Based Graphics"

- Surfaces represented only by points
- Maybe normals also
- No topology
- How can we do
- Rendering
- Modeling opperations
- Simulation

Rendering

- For each point draw a little "splat"
- Use associated normal for shading
- Possibly apply texture

If "splats" are small compared to spacing then gaps result

Splatting too many points would waste time

Rendering

- "QSplat" algorithm

- Build hierarchical tree of the points
- Use bounding spheres to estimate size of clusters
- Render clusters based on screen size
- Use cluster-normals for internal nodes

Rendering

Rendering

Rendering

Defining a Surface

- Two related methods
- Surface is a point attractor
- Point-set surfaces
- Implicit surface
- Multi-level Partition of Unity Implicits
- Implicit Moving Least-Squares

Point-Set Surfaces

- Surface is the attractor of a repeated projection process
- Find nearby points
- Fit plane (weighted)
- Project into plane
- Repeat

- Does it converge?
- How to weight points?

Point-Set Surfaces

Point-Set Surfaces

From Amenta and Kil, SIGGRAPH 2004.
Does this give us a good surface?
New "robust" methods existfor sharp features

Point-Set Surfaces

- Some examples

Implicit Moving Lest-Squares

- Define a scalar function that is zero passing through all the points

Implicit Moving Lest-Squares

Function is zero on boundary
Decreases in outward direction

Moving Least-Square Interpolation

Standard Least Square

Moving Least-Square Interpolation

Moving Least Square
$\left.\left[\begin{array}{cc}w\left(x, \mathbb{P}_{1}\right) \\ \cdots\left(x, \mathbb{P}_{N}\right)\end{array}\right] \begin{array}{c}b^{\top}\left(\mathbb{P}_{1}\right) \\ b^{\top}\left(\mathbb{P}_{N}\right)\end{array}\right] c=\left[\begin{array}{c}w\left(w, \mathbb{P}_{1}\right) \\ \cdots\left(x_{1}, \mathbb{P}_{N}\right)\end{array}\right]\left[\begin{array}{c}\phi_{\mathbb{1}} \\ \vdots \\ \phi_{N}\end{array}\right]$

Interpolating Functions

Interpolating Functions

Implicit Moving Lest-Squares

Implicit Moving Lest-Squares

$\rightarrow \underset{\substack{\text { Somple } \\ \text { vectors }}}{\substack{\text { Normal }}}$

Proof of good behavior in Kolluri SODA 2005
$\leftrightarrow \quad \omega \quad \omega \quad 0 \quad$

Partition of Unity Method

Ohtake, et al., SIGGRAPH 2003

Partition of Unity is a special case of Moving Least-Squares

Partition of Unity Method

Editing Operations

- Implicit function can be
- Combined w/ booleans
- Warped
- Offset
- Composed
- And more...

Editing Operations

- Implicit function can be
- Combined w/ booleans
- Warped
- Offset
- Composed
- And more...

Editing Operations

- Implicit function can be
- Combined w/ booleans
- Warped
- Offset
- Composed
- And more...

Smoothing

Adjustment Smoothing

Point-Based Simulation

- MLS originated in mechanics literature
- Natural use in graphics for animation

Point-Based Simulation

Point Based Animation

Suggested Reading

-"QSplat:A Multiresolution Point Rendering System for Large Meshes" by Szymon Rusinkiewicz and Marc Levoy, SIGGRAPH 2000.
-"Multi-level Partition of Unity Implicits" by Yutaka Ohtake and colleagues, SIGGRAPH 2003.
-"Point Based Animation of Elastic, Plastic and Melting Objects" by Mueller and colleagues, SCA 2004.
-"Defining point-set surfaces" by Nina Amenta and Yong Joo Kil, SIGGRAPH 2004.
-"Interpolating and Approximating Implicit Surfaces from Polygon Soup" by Chen Shen, James O'Brien, and Jonathan Shewchuk, SIGGRAPH 2004.

