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Today

General curve and surface representations

Splines and other polynomial bases
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Geometry Representations

Constructive Solid Geometry (CSG)
Parametric

Polygons

Subdivision surfaces

Implicit Surfaces
Point-based Surface

Not always clear distinctions
i.e. CSG done with implicits
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Geometry Representations

Object made by CSG
Converted to polygons
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Geometry Representations

Object made by CSG
Converted to polygons
Converted to implicit surface



6

Geometry RepresentationsacmTransactions
on GraphicsOctober 2002

Volume 21  Number 4

CSG on implicit surfaces



7

Geometry Representations

Point-based surface 
descriptions

Ohtake, et al., SIGGRAPH 2003
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Geometry Representations

Subdivision surface
(different levels of refinement)

Images from Subdivision.org
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Geometry Representations

Various strengths and weaknesses
Ease of use for design

Ease/speed for rendering

Simplicity

Smoothness

Collision detection

Flexibility (in more than one sense)

Suitability for simulation

many others...
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Parametric Representations

x = x(u) x ∈ "n u ∈ "

x = x(u) u ∈ "2
u, v ∈ "

u, v, w ∈ "
u ∈ "3

x = x(u, v, w)

Curves:

Surfaces: x = x(u, v) x ∈ "n

x = x(u)
Volumes: x ∈ "n

and so on...

Note: a vector function is really n scalar functions
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Same curve/surface may have multiple 
formulae

Parametric Rep. Non-unique
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x(u) = [u, u] x(u) = [u3, u3]
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Simple Differential Geometry

Tangent to curve

Tangents to surface

Normal of surface

Also: curvature, curve normals, curve bi-normal, others...
Degeneracies:                 or 

t(u) =
∂x

∂u

∣∣∣∣∣∣∣∣∣u

tu(u, v) =
∂x

∂u

∣∣∣∣∣∣∣∣∣u,v
tv(u, v) =

∂x

∂v

∣∣∣∣∣∣∣∣∣u,v

∂x/∂u = 0 tu × tv = 0

n̂ =
tu × tv

||tu × tv||
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Discretization

Arbitrary curves have an uncountable number of 
parameters

-1 0 1 2 3
-1
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3

i.e. specify function value at all points 
on real number line
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Discretization

Arbitrary curves have an uncountable number of 
parameters

Pick complete set of basis functions

Polynomials,  Fourier series, etc.

Truncate set at some reasonable point

Function represented by the vector (list) of

The     may themselves be vectors

x(u) =
∞∑

i=0

ciφi(u)

x(u) =
3∑

i=0

ciφi(u) =
3∑

i=0

ci u
i

ci

ci
x(u) =

3∑

i=0

ciφi(u)
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Polynomial Basis

Power Basis
x(u) =

d∑

i=0

ci u
i

x(u) = C · Pd
C = [c0, c1, c2, . . . , cd]

Pd = [1, u, u2, . . . , ud]

The elements of      are linearly independant
	 i.e. no good approximation

Pd

uk !≈
∑

i!=k

ci u
i

Skipping something would lead to bad results... odd stiffness
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Specifying a Curve

u0 u1

tu(u0)

tu(u1)

x(u0)
x(u1)

Given desired values (constraints) how do we determine 
the coefficients for cubic power basis?

u0 = 0 u1 = 1
For now, assume 



17

Specifying a Curve

tu(u0)

tu(u1)

x(u0)
x(u1)

Given desired values (constraints) how do we determine 
the coefficients for cubic power basis?

0 1

x(0) = c0 = x0

x(1) = ∑ ci = x1

x′(0)= c1 = x′
0

x′(1)= ∑ i ci= x′
1
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Specifying a Curve

tu(u0)

tu(u1)

x(u0)
x(u1)

Given desired values (constraints) how do we determine 
the coefficients for cubic power basis?

0 1





x0

x1

x′
0

x′
1





=





1 0 0 0

1 1 1 1

0 1 0 0

0 1 2 3





·





c0

c1

c2

c3





p = B · c
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Specifying a Curve

tu(u0)

tu(u1)

x(u0)
x(u1)

Given desired values (constraints) how do we determine 
the coefficients for cubic power basis?

0 1

c = βH · p

βH = B−1 =





1 0 0 0

0 0 1 0

−3 3 −2 1

2 −2 1 1
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Specifying a Curve

Given desired values (constraints) how do we determine 
the coefficients for cubic power basis?

c = βH · p

βH = B−1 =





1 0 0 0

0 0 1 0

−3 3 −2 1

2 −2 1 1





tu(u0)

tu(u1)

x(u0)
x(u1)

0 1

x(u) = P3 · c = P3βHp

=





1 + 0u− 3u2 + 2u3

0 + 0u + 3u2 − 2u3

0 + 1u− 2u2 + 1u3

0 + 0u− 1u2 + 1u3





p
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Specifying a Curve

Given desired values (constraints) how do we determine 
the coefficients for cubic power basis?

c = βH · p
tu(u0)

tu(u1)

x(u0)
x(u1)

0 1
x(u) =





1 + 0u− 3u2 + 2u3

0 + 0u + 3u2 − 2u3

0 + 1u− 2u2 + 1u3

0 + 0u− 1u2 + 1u3





p

x(u) =
3∑

i=0
pibi(u)

Hermite basis functions
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Specifying a Curve

Given desired values (constraints) how do we determine 
the coefficients for cubic power basis?

tu(u0)

tu(u1)

x(u0)
x(u1)

0 1

x(u) =
3∑

i=0
pibi(u)

Hermite basis functions

Probably not to scale.
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Hermite Basis

Specify curve by 
Endpoint values

Endpoint tangents (derivatives)

Parameter interval is arbitrary (most times)
Don’t need to recompute basis functions

These are cubic Hermite
Could do construction for any odd degree

            derivatives at end points(d− 1)/2
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Cubic Bézier

Similar to Hermite, but specify tangents 
indirectly

x0 = p0

x1 = p3

x′
0 = 3(p1 − p0)

x′
1 = 3(p3 − p2)

Note: all the control points 
are points in space, no tangents.
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Cubic Bézier

Similar to Hermite, but specify tangents 
indirectly

x0 = p0

x1 = p3

x′
0 = 3(p1 − p0)

x′
1 = 3(p3 − p2)





1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3





c =





1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3





p

c =





1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1





p

c = βZ p
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Cubic Bézier

Plot of Bézier basis functions

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1



27

Changing Bases

Power basis, Hermite, and Bézier all are still 
just cubic polynomials

The three basis sets all span the same space

Like different axes in 

Changing basis

!3 !4

c = βZ pZ

c = βH pH

pZ = β−1
Z βH pH
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Useful Properties of a Basis

Convex Hull
All points on curve inside convex hull of control 
points

 

Bézier basis has convex hull property

∑

i
bi(u) = 1 bi(u) ≥ 0 ∀u ∈ Ω
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Useful Properties of a Basis

Invariance under class of transforms
Transforming curve is same as transforming control 
points

 

Bézier basis invariant for affine transforms

Bézier basis NOT invariant for perspective transforms

NURBS are though...

x(u) =
∑

i
pibi(u)⇔ T x(u) =

∑

i
(T pi)bi(u)
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Useful Properties of a Basis

Local support
Changing one control point has limited impact on 
entire curve

Nice subdivision rules

Orthogonality (                        )

Fast evaluation scheme

Interpolation -vs- approximation

∫

Ω
bi(u)bj(u)du = δij
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u = .5

DeCasteljau Evaluation

A geometric evaluation scheme for Bézier

u = 0 u = .25

u = .75 u = 1

error...
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Adaptive Tessellation

Midpoint test subdivision

Possible problem
Simple solution if curve basis has convex hull property

If curve inside convex hull and 
the convex hull is nearly flat: 
curve is nearly flat and can be 
drawn as straight line

Better: draw convex hull
Works for Bézier because the ends are 
interpolated

Recall...
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Bézier Subdivision

Form control polygon for half of curve by 
evaluating at u=0.5

Repeated subdivision makes 
smaller/flatter segments

Also works for surfaces...
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Joining
a

b

c

C0⇔ b = b

C1⇔ b− a = c− b

G1⇔ b− a

||b− a|| =
c− b

||c− b||

If you change a, b, or c you must change the others

But if you change a, b, or c you do not have to change 
beyond those three.  *Local Support* 
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“Hump” Functions

Constraints at joining can be built in to 
make new basis
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Tensor-Product Surfaces

Surface is a curve swept through space

Replace control points of curve with other 
curves

x(u, v) =
∑

i pi bi(u)
∑

i qi(v) bi(u) qi(v) =
∑

j pji bj(v)

x(u, v) =
∑

ij
pijbi(u)bj(v)

x(u, v) =
∑

ij
pijbij(u, v)

bij(u, v) = bi(u)bj(v)
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Hermite Surface Bases
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Adaptive Tessellation

Given surface patch 
If close to flat: draw it

Else subdivide 4 ways
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Adaptive Tessellation

Avoid cracking

Passes flatness test Fails flatness test 
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Adaptive Tessellation

Avoid cracking

Crack in the surface

Cracks may be okay in some contexts...
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Adaptive Tessellation

Avoid cracking
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Avoid cracking

Adaptive Tessellation

Test interior and boundary of patch
Split boundary based on boundary test
Table of polygon patterns
May wish to avoid “slivers”


