CS-184: Computer Graphics

Lecture #12: Curves and Surfaces

Prof. James O'Brien University of California, Berkeley

V2007-F-12-1.0

Constructive Solid Geometry (CSG)
Parametric

Polygons
Subdivision surfaces

Implicit Surfaces

- Point-based Surface
- Not always clear distinctions
 i.e. CSG done with implicits

Object made by CSG Converted to polygons

Object made by CSG Converted to polygons Converted to implicit surface

CSG on implicit surfaces

Ohtake, et al., SIGGRAPH 2003

Point-based surface descriptions

Subdivision surface (different levels of refinement)

Images from Subdivision.org

Various strengths and weaknesses

- Ease of use for design
- Ease/speed for rendering
- Simplicity
- Smoothness
- Collision detection
- Flexibility (in more than one sense)
- Suitability for simulation
- many others...

Parametric Representations

- Curves: $\boldsymbol{x} = \boldsymbol{x}(u)$ $\boldsymbol{x} \in \Re^n$ $u \in \Re$
- Surfaces: $\boldsymbol{x} = \boldsymbol{x}(u, v)$ $\boldsymbol{x} \in \Re^n$ $u, v \in \Re$ $\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{u})$ $\boldsymbol{u} \in \Re^2$
- Volumes: $\boldsymbol{x} = \boldsymbol{x}(u, v, w)$ $\boldsymbol{x} \in \Re^n$ $u, v, w \in \Re$ $\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{u})$ $\boldsymbol{u} \in \Re^3$

and so on ...

Note: a vector function is really n scalar functions

Parametric Rep. Non-unique

 Same curve/surface may have multiple formulae

$$\boldsymbol{x}(u) = [u, u]$$

$$\boldsymbol{x}(u) = [u^3, u^3]$$

Simple Differential Geometry

- Also: curvature, curve normals, curve bi-normal, others...
- Degeneracies: $\partial x / \partial u = 0$ or $t_u \times t_v = 0$

Discretization

 Arbitrary curves have an uncountable number of parameters

i.e. specify function value at all points on real number line

Discretization

- Arbitrary curves have an uncountable number of parameters
- Pick complete set of basis functions
 - Polynomials, Fourier series, etc.
- Truncate set at some reasonable point

$$x(u) = \sum_{i=0}^{3} c_i \phi_i(u) = \sum_{i=0}^{3} c_i u^i$$

 $x(u) = \sum_{i=0}^{\infty} c_i \phi_i(u)$

- Function represented by the vector (list) of C_i
- The C_i may themselves be vectors

$$\boldsymbol{x}(u) = \sum_{i=0}^{3} \boldsymbol{c}_i \phi_i(u)$$

Polynomial Basis

• Power Basis

$$x(u) = \sum_{i=0}^{d} c_i u$$

 $x(u) = \boldsymbol{C} \cdot \boldsymbol{\mathcal{P}}^d$

$$oldsymbol{C} = [c_0, c_1, c_2, \dots, c_d]$$

 $oldsymbol{\mathcal{P}}^d = [1, u, u^2, \dots, u^d]$

The elements of \mathcal{P}^d are linearly independent i.e. no good approximation

$$u^k \not\approx \sum_{i \neq k} c_i \, u^i$$

Skipping something would lead to bad results... odd stiffness

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

For now, assume $u_0 = 0$ $u_1 = 1$

Specifying a Curve

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

_ 3,2 + 2,3

$$\mathbf{c} = \beta_{\mathrm{H}} \cdot \mathbf{p}$$
$$x(u) = \mathcal{P}^{3} \cdot \mathbf{c} = \mathcal{P}^{3} \beta_{\mathrm{H}} \mathbf{p}$$

0

0

3

-2

-3

0

1

1

-2 1

0

0

$$\begin{bmatrix} 1 + 0u - 3u^2 + 2u^3 \\ 0 + 0u + 3u^2 - 2u^3 \\ 0 + 1u - 2u^2 + 1u^3 \end{bmatrix} \mathbf{p}$$

$$\beta_{\mu} = \mathbf{B}^{-1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Hermite Basis

- Specify curve by
 - Endpoint values
 - Endpoint tangents (derivatives)
- Parameter interval is arbitrary (most times)
 - Don't need to recompute basis functions
- These are cubic Hermite
 - Could do construction for any odd degree
 - (d-1)/2 derivatives at end points

Cubic Bézier

 Similar to Hermite, but specify tangents indirectly

$$x_0 = p_0$$

$$x_1 = p_3$$

$$x'_0 = 3(p_1 - p_0)$$

$$x'_1 = 3(p_3 - p_2)$$

Note: all the control points are points in space, no tangents.

Cubic Bézier

 Similar to Hermite, but specify tangents indirectly

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \mathbf{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \mathbf{p}$$

$$\mathbf{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \mathbf{p}$$

$$\mathbf{c} = \boldsymbol{\beta}_{Z} \mathbf{p}$$

• Plot of Bézier basis functions

Changing Bases

- Power basis, Hermite, and Bézier all are still just cubic polynomials
 - The three basis sets all span the same space
 - Like different axes in \Re^3 \Re^4
- Changing basis

$$\mathbf{c} = \boldsymbol{\beta}_{Z} \mathbf{p}_{Z}$$
$$\mathbf{p}_{Z} = \boldsymbol{\beta}_{Z}^{-1} \boldsymbol{\beta}_{H} \mathbf{p}_{H}$$
$$\mathbf{c} = \boldsymbol{\beta}_{H} \mathbf{p}_{H}$$

Useful Properties of a Basis

Convex Hull

All points on curve inside convex hull of control points

• $\sum_{i} b_i(u) = 1$ $b_i(u) \ge 0$ $\forall u \in \Omega$

• Bézier basis has convex hull property

Useful Properties of a Basis

- Invariance under class of transforms
 - Transforming curve is same as transforming control points

•
$$\boldsymbol{x}(u) = \sum_{i} \boldsymbol{p}_{i} b_{i}(u) \Leftrightarrow \mathcal{T} \boldsymbol{x}(u) = \sum_{i} (\mathcal{T} \boldsymbol{p}_{i}) b_{i}(u)$$

- Bézier basis invariant for affine transforms
- Bézier basis NOT invariant for perspective transforms
 - NURBS are though...

Useful Properties of a Basis

- Local support
 - Changing one control point has limited impact on entire curve
 - Nice subdivision rules
 - Orthogonality ($\int_{\Omega} b_i(u)b_j(u)du = \delta_{ij}$)
 - Fast evaluation scheme
 - Interpolation -vs- approximation

Adaptive Tessellation

- Midpoint test subdivision
- Possible problem

• Simple solution if curve basis has convex hull property

If curve inside convex hull and the convex hull is nearly flat: curve is nearly flat and can be drawn as straight line

Better: draw convex hull Works for Bézier because the ends are interpolated

Bézier Subdivision

 Form control polygon for half of curve by evaluating at u=0.5

Repeated subdivision makes smaller/flatter segments

Also works for surfaces...

But if you change a, b, or c you do not have to change beyond those three. *LOCAL SUPPORT*

Tensor-Product Surfaces

- Surface is a curve swept through space
- Replace control points of curve with other curves

$$\begin{aligned} x(u,v) =& \sum_i p_i \, b_i(u) \\ & \sum_i q_i(v) \, b_i(u) \end{aligned} \qquad q_i(v) =& \sum_j p_{ji} \, b_j(v) \end{aligned}$$

 $x(u,v) = \sum_{ij} p_{ij}b_i(u)b_j(v) \qquad b_{ij}(u,v) = b_i(u)b_j(v)$

$$x(u,v) = \sum_{ij} p_{ij} b_{ij}(u,v)$$

Adaptive Tessellation

- Given surface patch
 - If close to flat: draw it
 - Else subdivide 4 ways

Adaptive Tessellation

• Avoid cracking

Test interior and boundary of patch Split boundary based on boundary test Table of polygon patterns May wish to avoid "slivers"