CS-184: Computer Graphics

Lecture \#IO: Clipping and Hidden Surfaces

Prof. James O'Brien University of California, Berkeley

Today

- Clipping
- Clipping to view volume
- Clipping arbitrary polygons
- Hidden Surface Removal
- Z-Buffer
- BSP Trees
- Others

Clipping

- Stuff outside view volume should not be drawn
- Too close: obscures view

Clipping

- Stuff outside view volume should not be drawn
- Too close: obscures view
- Too far:
- Complexity
- Z-buffer problems
- Too high/low/right/left:
- Memory errors
- Broken algorithms
- Complexity

Clipping Line to Line/Plane

Line segment to be clipped

$$
\mathbf{x}(t)=\mathbf{a}+t(\mathbf{b}-\mathbf{a})
$$

Line/plane that clips it

$$
\hat{\mathbf{n}} \cdot \mathbf{x}-\hat{\mathbf{n}} \cdot \mathbf{r}=0
$$

Clipping Line to Line/Plane

Line segment to be clipped

$$
\mathbf{x}(t)=\mathbf{a}+t(\mathbf{b}-\mathbf{a})
$$

Line/plane that clips it $\hat{\mathbf{n}} \cdot \mathbf{x}-f=0$

Clipping Line to Line/Plane

Line segment to be clipped

Line/plane that clips it
$\hat{\mathbf{n}} \cdot \mathbf{x}-f=0$

$\hat{\mathbf{n}} \cdot(\mathbf{a}+t(\mathbf{b}-\mathbf{a}))-f=0$
$\hat{\mathbf{n}} \cdot \mathbf{a}+t(\hat{\mathbf{n}} \cdot(\mathbf{b}-\mathbf{a}))-f=0$

Clipping Line to Line/Plane

- Segment may be on one side

$$
t \notin[0 \ldots 1]
$$

- Lines may be parallel

$$
\hat{\mathbf{n}} \cdot \mathbf{d}=0
$$

Clipping Line to Line/Plane

- Segment may be on one side

$$
t \notin[0 \ldots 1]
$$

- Lines may be parallel

$$
\hat{\mathbf{n}} \cdot \mathbf{d}=0
$$

$$
|\hat{\mathbf{n}} \cdot \mathbf{d}| \leq \varepsilon \quad \text { (Recall comments about numerical issues) }
$$

Polygon Clip to Convex Domain

- Convex domain defined by collection of planes (or lines or hyper-planes)
- Planes have outward pointing normals
- Clip against each plane in turn
- Check for early/trivial rejection

Polygon Clip to Convex Domain

Polygon Clip to Convex Domain

Polygon Clip to Convex Domain

- Sutherland-Hodgman algorithm
- Basically edge walking
- Clipping done often... should be efficient
- Liang-Barsky parametric space algorithm
- See text for clipping in 4D homogenized coordinates

General Polygon Clipping

- Weiler Algorithm
- Double edges

Hidden Surface Removal

- True 3D to 2D projection would put every thing overlapping into the view plane.
- We need to determine what's in front and display only that.

Z-Buffers

- Add extra depth channel to image
- Write Z values when writing pixels
- Test Z values before writing

Z-Buffers

- Benefits
- Easy to implement
- Works for most any geometric primitive
- Parallel operation in hardware
- Limitations
- Quantization and aliasing artifacts
- Overfill
- Transparency does not work well

Z-Buffers

- Transparency requires partial sorting:

Z-Buffers

Recall depth-value distortions.

A-Buffers

- Store sorted list of "fragments" at each pixel
- Draw all opaque stuff first then transparent
- Stuff behind full opacity gets ignored
- Nice for antialiasing...

Scan-line Algorithm

- Assume polygons don't intersect
- Each time an edge is crossed determine who's on top

Painter's Algorithm

- Sort Polygons Front-to-Back
- Draw in order
- Back-to-Front works also, but wasteful
- How to sort quickly?
- Intersecting polygons?
- Cycles?

BSP-Trees

- Binary Space Partition Trees
- Split space along planes
- Allows fast queries of some spatial relations
- Simple construction algorithm
- Select a plane as sub-tree root
- Everything on one side to one child
- Everything on the other side to other child
- Use random polygon for splitting plane

BSP-Trees
\qquad

BSP-Trees
\qquad

BSP-Trees

BSP-Trees

$$
\left.\underbrace{d}_{b}\right|_{\frac{a}{a}} ^{a}
$$

BSP-Trees

BSP-Trees

BSP-Trees

BSP-Trees

- Visibility Traversal
- Variation of in-order-traversal
- Child one
- Sub-tree root
- Child two
- Select "child one" based on location of viewpoint
- Child one on same side of sub-tree root as viewpoint

BSP-Trees

BSP-Trees

$$
g: e_{2}: c_{2}: f: e_{1}: a: c_{1}: b: d
$$

