CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O'Brien University of California, Berkeley

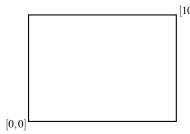
V2006-F-08-1.0

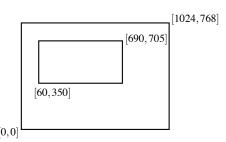
Today

- Windowing and Viewing Transformations
 - Windows and viewports
 - Orthographic projection
 - Perspective projection

Screen Space

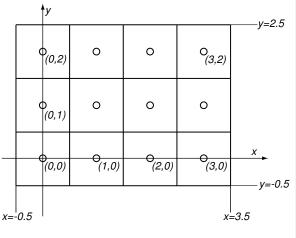
- Monitor has some number of pixels
 - e.g. 1024 x 768
- Some sub-region used for given program
 - You call it a window
 - Let's call it a viewport instead





Screen Space

- May not really be a "screen"
 - Image file
 - Printer
 - Other
- Little pixel details
- Sometimes odd
 - Upside down
 - Hexagonal



From Shirley textbook.

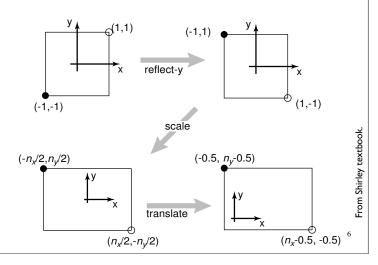
Screen Space

- Viewport is somewhere on screen
 - You probably don't care where
 - Window System likely manages this detail
 - Sometimes you care exactly where
- Viewport has a size in pixels
 - Sometimes you care (images, text, etc.)
 - Sometimes you don't (using high-level library)

.

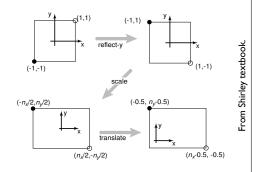
Canonical View Space

Canonical view region



Canonical View Space

- Canonical view region
 - \circ 2D: [-1,-1] to [+1,+1]



$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

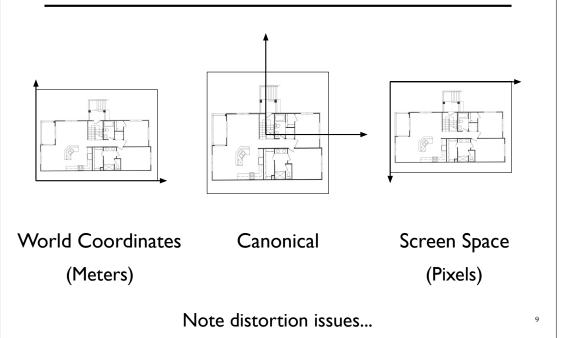
7

Canonical View Space

- Canonical view region
 - ∘ **2D**: [-1,-1] to [+1,+1]
- o Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

rom Shirley textbook.

Canonical View Space



Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
 - Linear
 - Orthographic
 - Perspective
 - Nonlinear

Projection

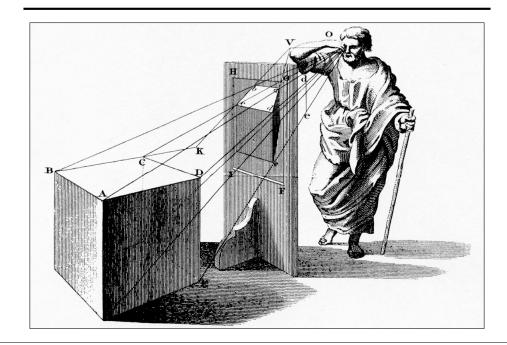
- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
 - Linear
 Orthographic
 Perspective

 Many special cases in books just one of these two...

Nonlinear

Projection

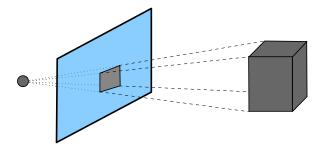
- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
 - Linear
 Orthographic
 Perspective
 Nonlinear
 Many special cases in books just one of these two...
 Orthographic is special case of perspective...



1

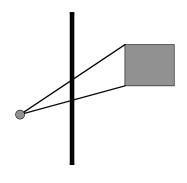
Linear Projection

- Projection onto a planar surface
- Projection directions either
 - Converge to a point
 - Are parallel (converge at infinity)

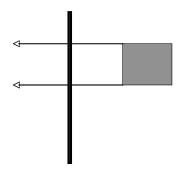


Linear Projection

∘ A 2D view



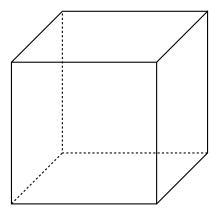
Perspective



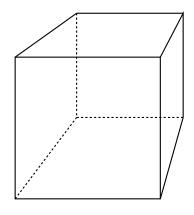
Orthographic

13

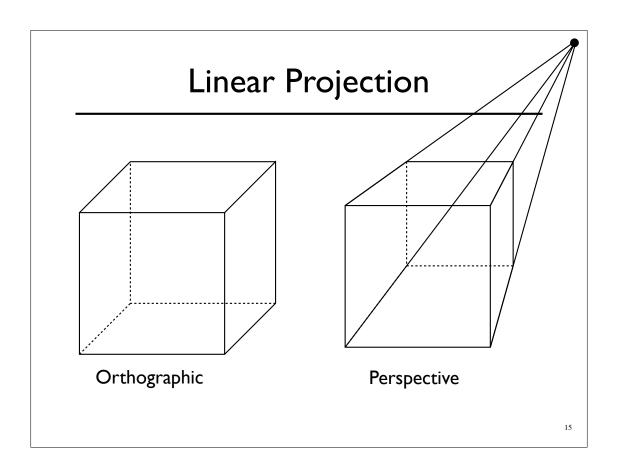
Linear Projection

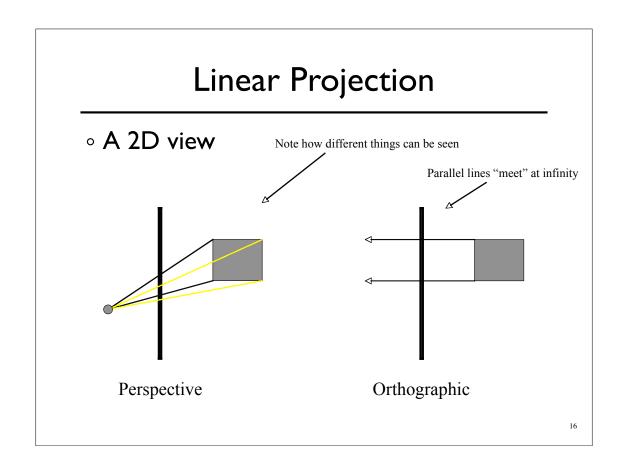


Orthographic

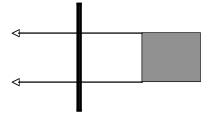


Perspective





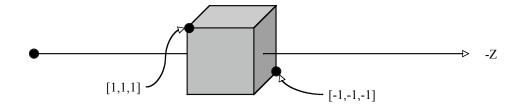
- No foreshortening
- Parallel lines stay parallel
- Poor depth cues



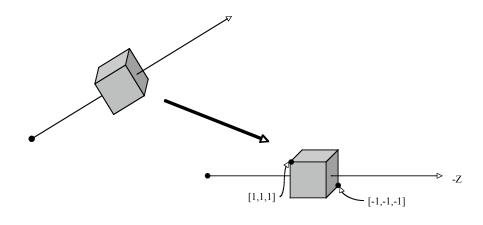
1

Canonical View Space

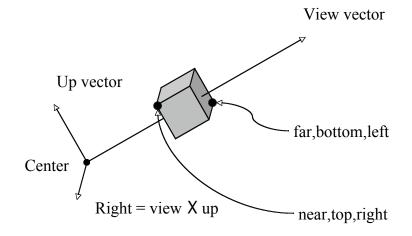
- Canonical view region
 - \circ 3D: [-1,-1,-1] to [+1,+1,+1]
- \circ Assume looking down -Z axis
 - Recall that "Z is in your face"



Convert arbitrary view volume to canonical



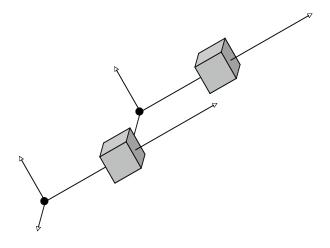
Orthographic Projection



Origin

*Assume up is perpendicular to view.

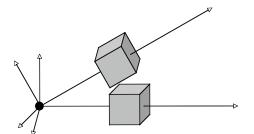
 \circ Step I: translate center to origin



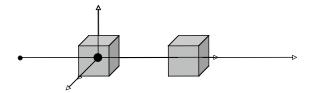
21

Orthographic Projection

- Step I: translate center to origin
- \circ Step 2: rotate view to -Z and up to +Y



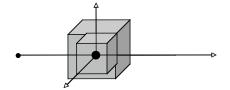
- Step I: translate center to origin
- \circ Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume



23

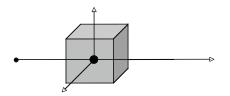
Orthographic Projection

- Step I: translate center to origin
- \circ Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size



- Step I: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size

$$\mathbf{M} = \mathbf{S} \cdot \mathbf{T}_2 \cdot \mathbf{R} \cdot \mathbf{T}_1$$



25

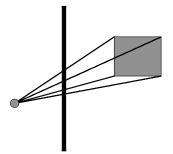
Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size

$$\mathbf{M} = \mathbf{S} \cdot \mathbf{T}_2 \cdot \mathbf{R} \cdot \mathbf{T}_1$$

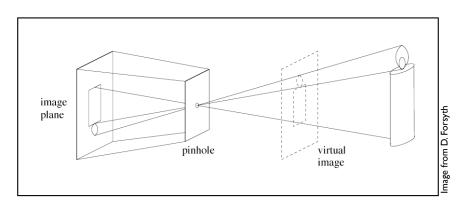
$$\mathbf{M} = \mathbf{M}_o \cdot \mathbf{M}_v$$

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- Z ordering preserved (where we care)

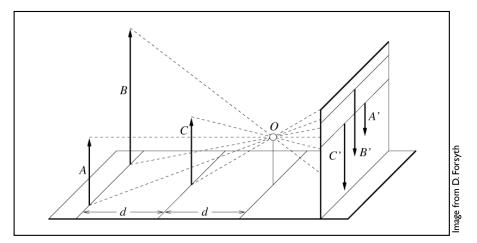


20

Perspective Projection



Pinhole a.k.a center of projection

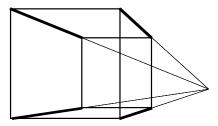


Foreshortening: distant objects appear smaller

2

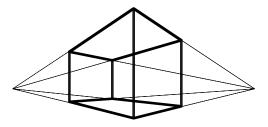
Perspective Projection

- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera



"One point perspective"

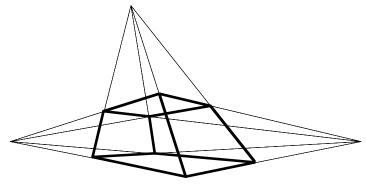
- Vanishing points
 - Depend on the scene
 - Nor intrinsic to camera



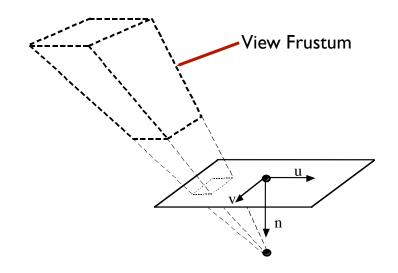
"Two point perspective"

Perspective Projection

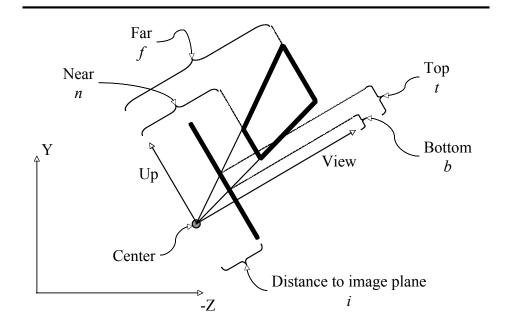
- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera



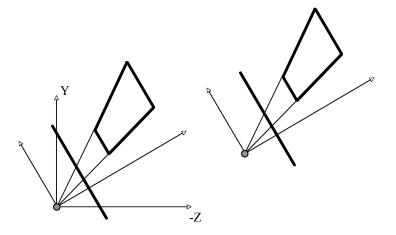
"Three point perspective" 31



Perspective Projection



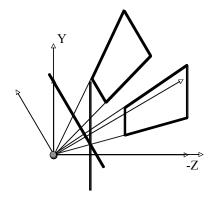
• Step 1:Translate center to origin



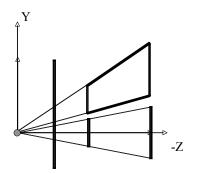
34

Perspective Projection

- Step 1:Translate center to origin
- \circ Step 2: Rotate view to -Z, up to +Y



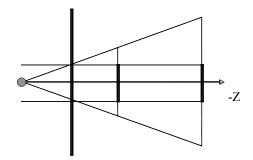
- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- \circ Step 3: Shear center-line to -Z axis



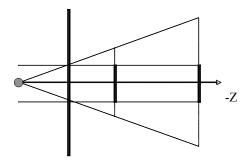
36

Perspective Projection

- Step 1:Translate center to origin
- ∘ Step 2: Rotate view to -Z, up to +Y
- ∘ Step 3: Shear center-line to -Z axis
- Step 4: Perspective



- Step 1:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective



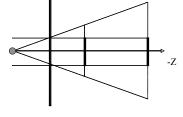
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0 \end{bmatrix}$$

37

Perspective Projection

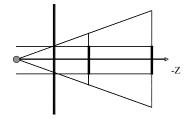
- Step 4: Perspective
 - Points at z=-i stay at z=-i
 - Points at z=-f stay at z=-f
 - Points at z=0 goto $z=\pm\infty$
 - Points at $z=-\infty$ goto z=-(i+f)

- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted



- Step 4: Perspective
 - Points at z=-i stay at z=-i
 - Points at z=-f stay at z=-f
 - Points at z=0 goto $z=\pm\infty$
 - Points at $z=-\infty$ goto z=-(i+f)

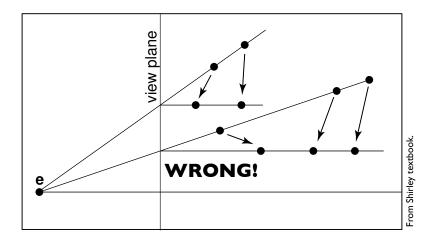
- Straight lines stay straight
- \circ Depth ordering preserved in [-i,-f]
- $\circ\,$ Movement along lines distorted

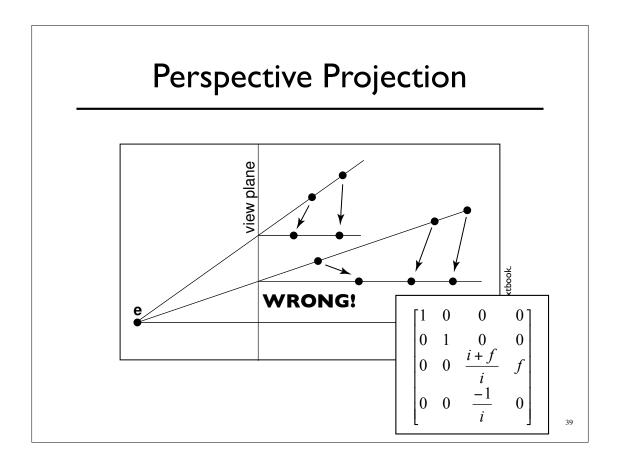


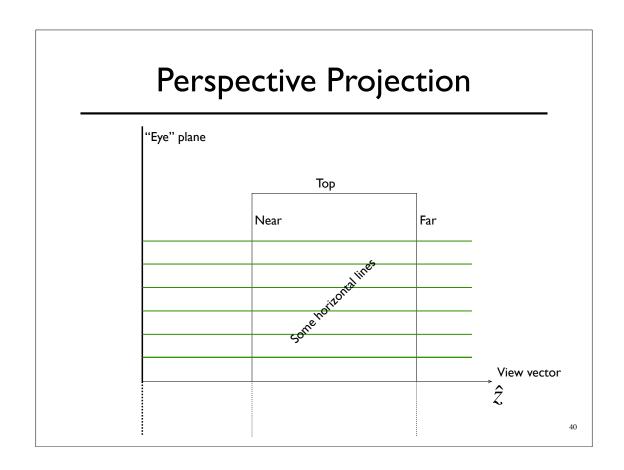
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0 \end{bmatrix}$$

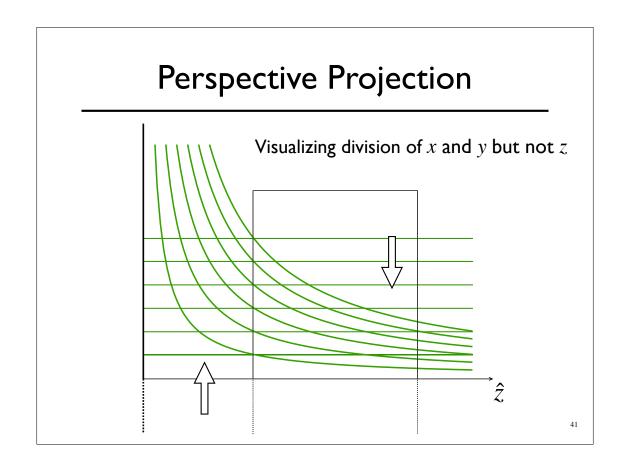
38

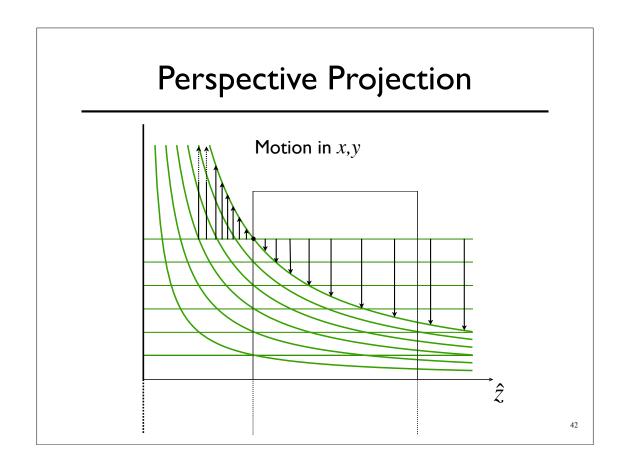
Perspective Projection

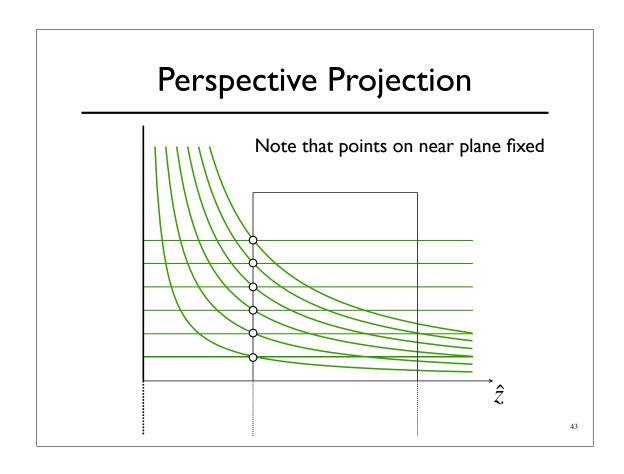


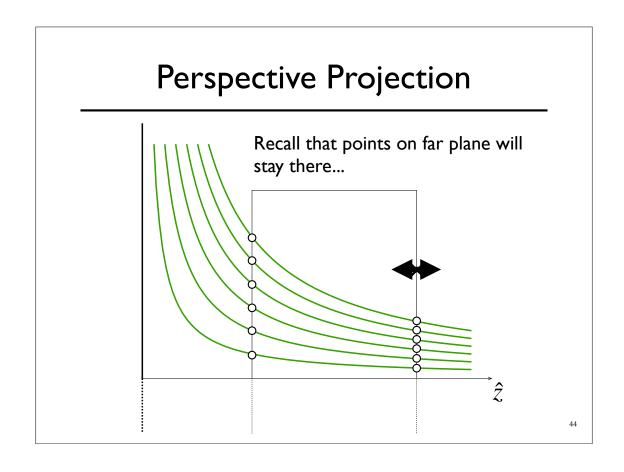


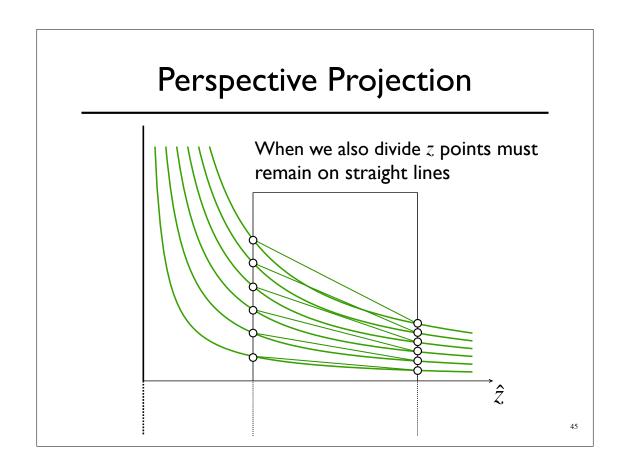


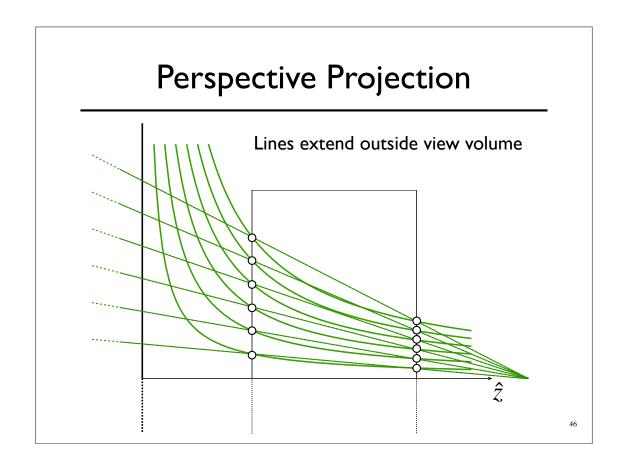


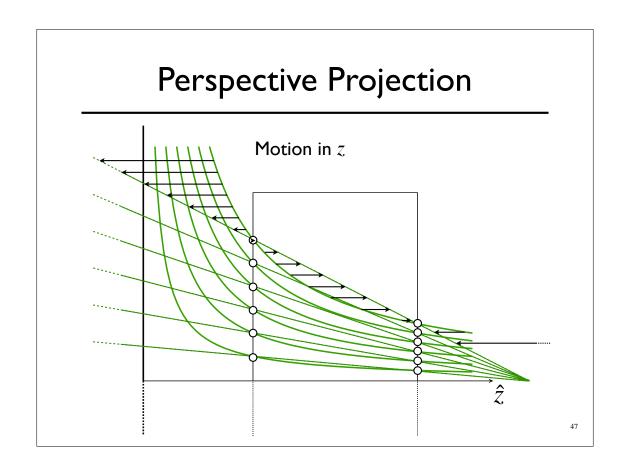


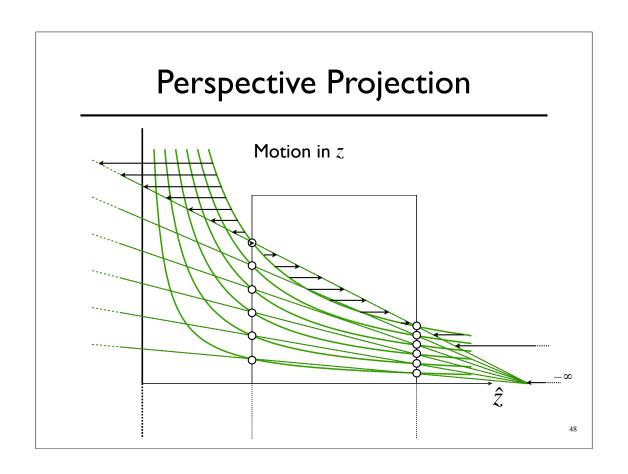


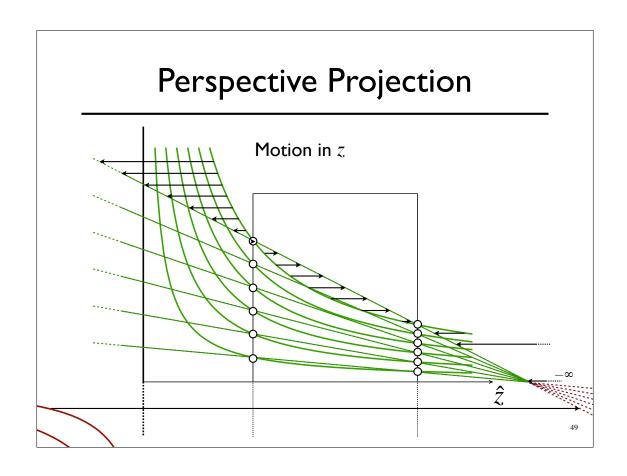


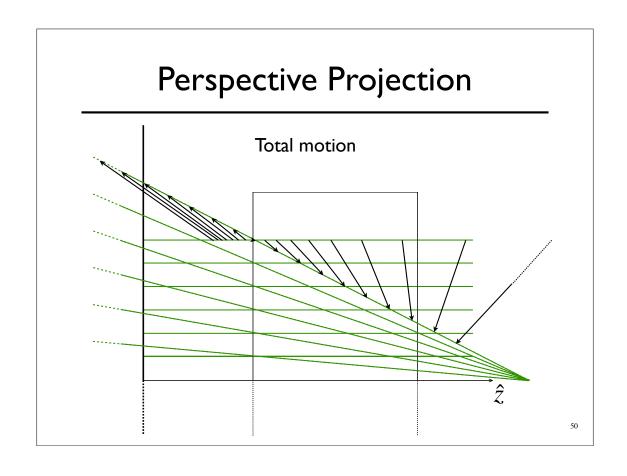




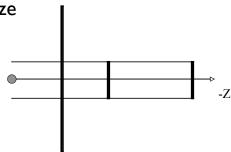








- Step 1:Translate center to orange
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size



51

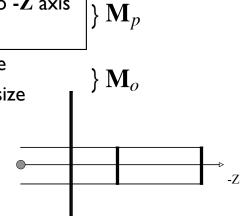
Perspective Projection

- Step I:Translate center to orange
- \circ Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- ∘ Step 4: Perspective

Step 5: center view volume

Step 6: scale to canonical size

 $\mathbf{M} = \mathbf{M}_o \cdot \mathbf{M}_p \cdot \mathbf{M}_v$



 M_{ν}

- There are other ways to set up the projection matrix
 - View plane at z=0 zero
 - Looking down another axis
 - ∘ etc...
- Functionally equivalent

5

Vanishing Points

• Consider a ray:

$$\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}$$
 \mathbf{p}

Vanishing Points

- \circ Ignore ${f Z}$ part of matrix
- X and Y will give location in image plane
- \circ Assume image plane at z=-i

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \text{whatever} \\ 0 & 0 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

55

Vanishing Points

$$\begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix}$$

Vanishing Points

 \circ Assume $d_z = -1$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix} = \begin{bmatrix} \frac{p_x + td_x}{-p_z + t} \\ \frac{p_y + td_y}{-p_z + t} \end{bmatrix}$$

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

57

Vanishing Points

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

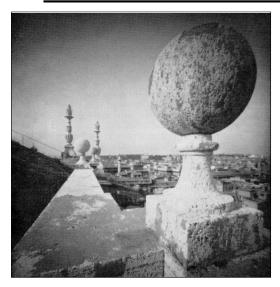
- All lines in direction d converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- \circ Lines parallel to image plane ($d_z = 0$) vanish at infinity

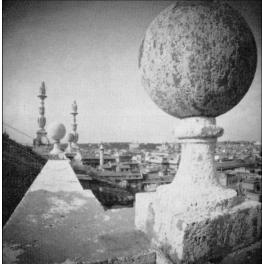
What's a horizon?

Perspective Tricks

59

Right Looks Wrong (Sometimes)





From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995

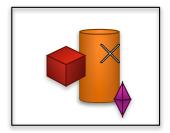
Strangeness

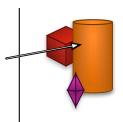
The Ambassadors by Hans Holbein the Younger

6

Ray Picking

• Pick object by picking point on screen





• Compute ray from pixel coordinates.

Ray Picking

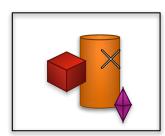
Transform from World to Screen is:

$$\begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix} = \mathbf{M} \begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix}$$

• Inverse:

$$\begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix}$$

• What Z value?



-

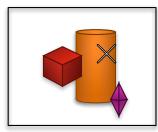
Ray Picking

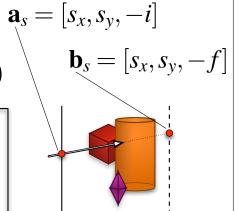
• Recall that:

- Depends on screen details, YMMV General idea should translate...
- \circ Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f

$$\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}$$

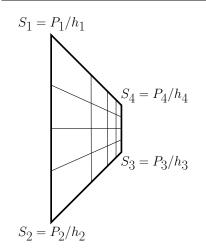
 $\mathbf{r}(t) = \mathbf{a}_w + t(\mathbf{b}_w - \mathbf{a}_w)$

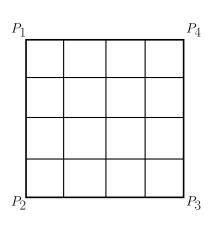


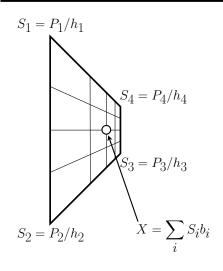


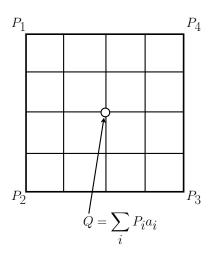
- Recall depth distortion from perspective
 - Interpolating in screen space different than in world
 - Ok, for shading (mostly)
 Bad for texture
 World
 Half way in world space
 Screen
 Half way in screen space

Depth Distortion





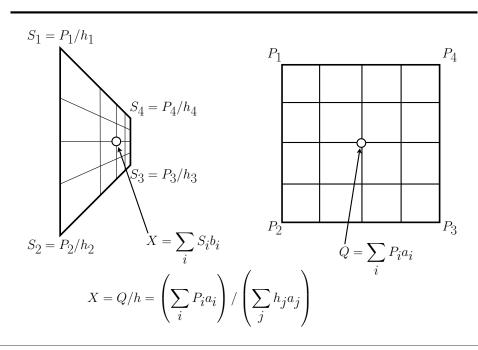


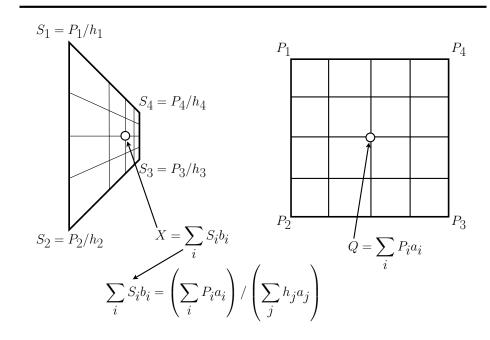


We know the S_i , P_i , and b_i , but not the a_i .

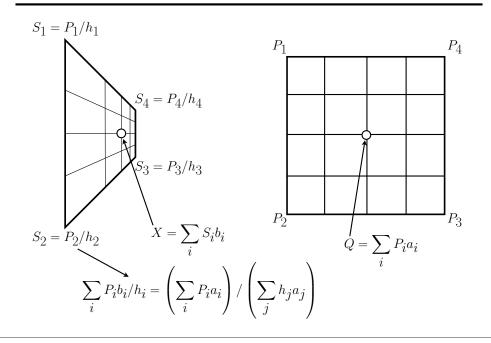
a

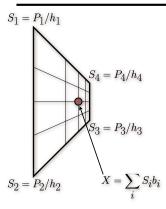
Depth Distortion

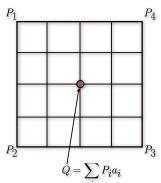




Depth Distortion







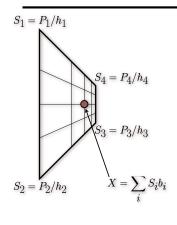
Independent of given vertex locations.

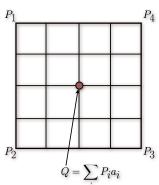
$$\sum_{i}^{i} P_{i} b_{i} / h_{i} = \left(\sum_{i} P_{i} a_{i}\right) / \left(\sum_{j} h_{j} a_{j}\right)$$

$$b_i/h_i = a_i/\left(\sum_j h_j a_j\right) \quad \forall i$$

70

Depth Distortion

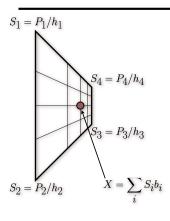


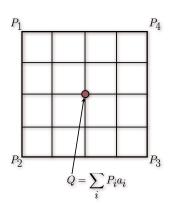


 $\int_{Q} = \sum_{i} P_{i} a_{i}$ $b_{i}/h_{i} = a_{i}/\left(\sum_{j} h_{j} a_{j}\right) \quad \forall i$

Linear equations in the a_i .

$$\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i} - a_{i} = 0 \quad \forall i$$





Linear equations in the a_i .

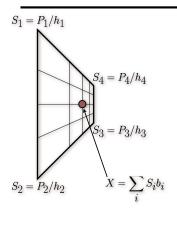
$$\left(\sum_{j}h_{j}a_{j}\right)b_{i}/h_{i}-a_{i}=0 \quad \forall i$$

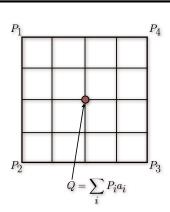
Not invertible so add some extra constraints.

$$\sum_{i} a_i = \sum_{i} b_i = 1$$

-

Depth Distortion





For a line: $a_1 = h_2 b_i / (b_1 h_2 + h_1 b_2)$

For a triangle: $a_1 = h_2 h_3 b_1 / (h_2 h_3 b_1 + h_1 h_3 b_2 + h_1 h_2 b_3)$

Obvious Permutations for other coefficients.