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Today

2D Transformations

“Primitive” Operations

Scale, Rotate, Shear, Flip, Translate

Homogenous Coordinates

SVD

Start thinking about rotations...
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Introduction

Transformation: 
An operation that changes one configuration into another

For images, shapes, etc.
A geometric transformation maps positions that define the object to 
other positions

Linear transformation means the transformation is defined by a 
linear function... which is what matrices are good for.
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Some Examples

Images from Conan The Destroyer, 1984

Original

Uniform Scale

Rotation

Nonuniform Scale

Shear



5

Mapping Function

c(x) = [195,120,58]

f (x) = x in old image

c′x= c( f (x))
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Linear -vs- Nonlinear

Linear (shear)

Nonlinear (swirl)
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Geometric -vs- Color Space

Linear Geometric
(flip)

Color Space Transform
(edge finding)
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Instancing

RHW

M.C. Escher, from Ghostscript 8.0 Distribution
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Instancing

RHW

Reuse geometric descriptions

Saves memory
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Linear is Linear

Polygons defined by points

Edges defined by interpolation between two 
points

Interior defined by interpolation between all 
points

Linear interpolation
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Linear is Linear

Composing two linear function is still linear

Transform polygon by transforming vertices

Scale
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Linear is Linear

Composing two linear function is still linear

Transform polygon by transforming vertices

f (x) = a+bx g( f ) = c+d f

g(x) = c+d f (x) = c+ad+bdx

g(x) = a′ +b′x
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Points in Space

Represent point in space by vector in 

Relative to some origin!

Relative to some coordinate axes!

Later we’ll add something extra...
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Basic Transformations

Basic transforms are: rotate, scale, and 
translate

Shear is a composite transformation!

Rotate

Translate

Scale

Shear  -- not really “basic”
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Linear Functions in 2D

x′ = f (x,y) = c1+ c2x+ c3y

y′ = f (x,y) = d1+d2x+d3y

[
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y′

]
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·
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x
′ = t+M ·x
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Rotations

Rotate
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Rotations

Rotations are positive counter-clockwise

Consistent w/ right-hand rule

Don’t be different...

Note: 

rotate by zero degrees give identity
rotations are modulo 360 (or      )2!
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Rotations

Preserve lengths and distance to origin

Rotation matrices are orthonormal

 

In 2D rotations commute... 

But in 3D they won’t!

Det(R) = 1 !=−1
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Scales
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Scales

Diagonal matrices

Diagonal parts are scale in X and scale in Y directions

Negative values flip

Two negatives make a positive (180 deg. rotation)

Really, axis-aligned scales

Not axis-aligned...
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Shears

Shear
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Shears

Shears are not really primitive transforms

Related to non-axis-aligned scales

More shortly.....
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Translation

This is the not-so-useful way:

Translate
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Note that its not like the others.
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Arbitrary Matrices

For everything but translations we have:

Soon, translations will be assimilated as well

What does an arbitrary matrix mean?

x
′ = A ·x
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Singular Value Decomposition

For any matrix,    , we can write SVD:

  where Q and R are orthonormal and S is diagonal

Can also write Polar Decomposition

  where Q is still orthonormal

A

T
QSRA =

T
QRSRA =

not the same Q
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Decomposing Matrices

We can force Q and R to have Det=1 so they are 
rotations

Any matrix is now:

Rotation:Rotation:Scale:Rotation

See, shear is just a mix of rotations and scales
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Composition

Matrix multiplication composites matrices

Several translations composted to one

Translations still left out...

BApp ='
“Apply A to p and then apply B to that result.”

CppBAApBp === )()('

uCpBtBAptApBp +=+=+= )('
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Composition

Matrix multiplication composites matrices

Several translations composted to one

Translations still left out...

BApp ='
“Apply A to p and then apply B to that result.”

CppBAApBp === )()('

uCpBtBAptApBp +=+=+= )('
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Composition

shear
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shear

Transformations built up 
from others

SVD builds from scale 
and rotations

Also build other ways

i.e. 45 deg rotation built 
from shears
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Move to one higher dimensional space

Append a 1 at the end of the vectors

Homogeneous Coordiantes
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Homogeneous Translation
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The tildes are for clarity to 
distinguish homogenized from 

non-homogenized vectors.
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Homogeneous Others
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Now everything looks the same...
Hence the term “homogenized!”
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Compositing Matrices

Rotations and scales always about the origin

How to rotate/scale about another point?

-vs-
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Rotate About Arb. Point

Step 1: Translate point to origin

Translate (-C) 
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Rotate About Arb. Point

Step 1: Translate point to origin

Step 2: Rotate as desired

Translate (-C) 

Rotate (!) 
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Step 1: Translate point to origin

Step 2: Rotate as desired

Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C) 

Rotate (!) 

Translate (C) 
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Step 1: Translate point to origin

Step 2: Rotate as desired

Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C) 

Rotate (!) 

Translate (C) 

pApRTTp ~~)('~ =!=

35Don’t negate the 1...

Step 1: Translate point to origin

Step 2: Rotate as desired

Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C) 

Rotate (!) 

Translate (C) 

pApRTTp ~~)('~ =!=
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Scale About Arb. Axis

Diagonal matrices scale about coordinate 
axes only:

Not axis-aligned
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Scale About Arb. Axis

Step 1: Translate axis to origin
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Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the 
coordinate axes
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Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the 
coordinate axes

Step 3: Scale as desired
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Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the 
coordinate axes

Step 3: Scale as desired

Steps 4&5: Undo 2 and 1 (reverse order)
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Order Matters!

The order that matrices appear in matters

Some special cases work, but they are special

But matrices are associative

Think about efficiency when you have many 
points to transform...

A ·B != BA

(A ·B) ·C= A · (B ·C)



42

Matrix Inverses

In general:        undoes effect of  

Special cases:

Translation: negate     and 

Rotation: transpose

Scale: invert diagonal  (axis-aligned scales)

Others:

Invert matrix

Invert SVD matrices  

A
−1

A

tx ty

43

Point Vectors / Direction Vectors

Points in space have a 1 for the “w” 
coordinate

What should we have for          ?

 

Directions not the same as positions

Difference of positions is a direction

Position + direction is a position

Direction + direction is a direction

Position + position is nonsense

a−b
w= 0
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Somethings Require Care

For example normals do not transform normally

M(a×b) "= (Ma)× (Mb)

M(Re) != R(Me)


