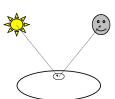
CS-184: Computer Graphics

Lecture #4: Shading

Prof. James O'Brien University of California, Berkeley


V2006-F-04-1.0

Today

- Local Illumination & Shading
 - The BRDF
 - Simple diffuse and specular approximations
 - Shading interpolation: flat, Gouraud, Phong
 - Some miscellaneous tricks

Local Shading

- Local: consider in isolation
 - 1 light
 - 1 surface
 - The viewer
- Recall: lighting is linear
 - Almost always...

3

Local Shading

- Local: consider in isolation
 - 1 light
 - 1 surface
 - The viewer
- Recall: lighting is linear
 - Almost always...

Local Shading

- Examples of non-local phenomena
 - Shadows
 - Reflections
 - Refraction
 - Indirect lighting

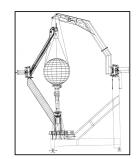
The BRDF

- The **B**i-directional **R**eflectance **D**istribution **F**unction
- Given

$$\rho = \rho(\theta_V, \theta_L)$$

- $\circ \ {\it Surface material}$
- $= \rho(\textbf{v},\textbf{l},\textbf{n})$
- Incoming light direction
- Direction of viewer
- Orientation of surface
- Return:
 - $\,{\scriptstyle \circ}\,$ fraction of light that reaches the viewer
- We'll worry about physical units later...

The BRDF



- Spatial variation capture by "the material"
- Frequency dependent
 - Typically use separate RGB functions
 - Does not work perfectly
 - $_{\circ}$ Better: $\rho = \rho(\theta_{\textit{V}}, \theta_{\textit{L}}, \lambda_{_{in}}, \lambda_{_{out}})$

Obtaining BRDFs

• Measure from real materials

Images from Marc Levoy

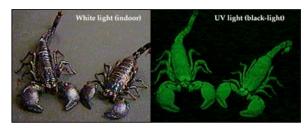
Obtaining BRDFs

- Measure from real materials
- Computer simulation
 - Simple model + complex geometry
- Derive model by analysis
- $\circ \ Make \ something \ up$

8

Beyond BRDFs

- The BRDF model does not capture everything
 - e.g. Subsurface scattering (BSSRDF)



Images from Jensen et. al, SIGGRAPH 2001

Beyond BRDFs

- The BRDF model does not capture everything
 - e.g. Inter-frequency interactions

 $\rho = \rho(\theta_V, \theta_L, \lambda_{\mbox{\tiny in}}, \lambda_{\mbox{\tiny out}})$ This version would work....

. .

A Simple Model

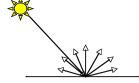
- \circ Approximate BRDF as sum of
 - A diffuse component
 - A specular component
 - A "ambient" term

l

Diffuse Component

Lambert's Law

- Intensity of reflected light proportional to cosine of angle between surface and incoming light direction
- Applies to "diffuse," "Lambertian," or "matte" surfaces
- Independent of viewing angle
- Use as a component of non-Lambertian surfaces


12

Diffuse Component

Comment about two-side lighting in text is wrong...

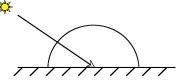
$$k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})$$

$$\max(k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}), 0)$$

Diffuse Component

• Plot light leaving in a given direction:

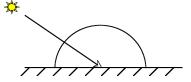
 \circ Plot light leaving from each point on surface



14

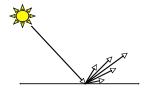
Diffuse Component

• Plot light leaving in a given direction:


 \circ Plot light leaving from each point on surface

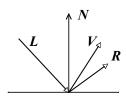
Diffuse Component

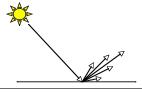
• Plot light leaving in a given direction:


• Plot light leaving from each point on surface

14

Specular Component

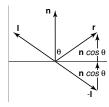

- Specular component is a mirror-like reflection
- Phong Illumination Model
 - A reasonable approximation for some surfaces
 - Fairly cheap to compute
- Depends on view direction



Specular Component

$$k_s I(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}})^p$$

 $k_s I \max(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}}, 0)^p$

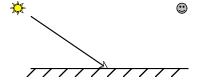


16

Specular Component

Computing the reflected direction

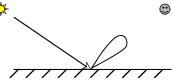
$$\hat{\mathbf{r}} = -\hat{\mathbf{l}} + 2(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$$



$$\hat{\mathbf{h}} = \frac{\hat{\mathbf{l}} + \hat{\mathbf{v}}}{||\hat{\mathbf{l}} + \hat{\mathbf{v}}||}$$

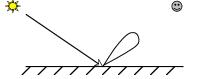
Specular Component

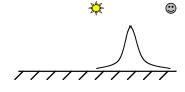
• Plot light leaving in a given direction:


Plot light leaving from each point on surface

Specular Component

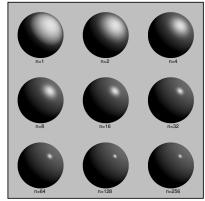
• Plot light leaving in a given direction:


 \circ Plot light leaving from each point on surface



Specular Component

• Plot light leaving in a given direction:

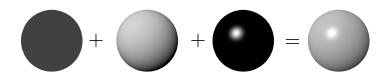

• Plot light leaving from each point on surface

18

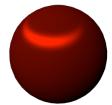
Specular Component

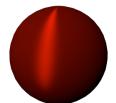
Specular exponent sometimes called "roughness"

Ambient Term

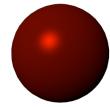

- Really, its a cheap hack
- Accounts for "ambient, omnidirectional light"
- Without it everything looks like it's in space

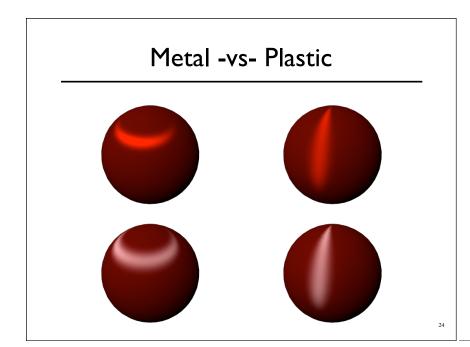
20

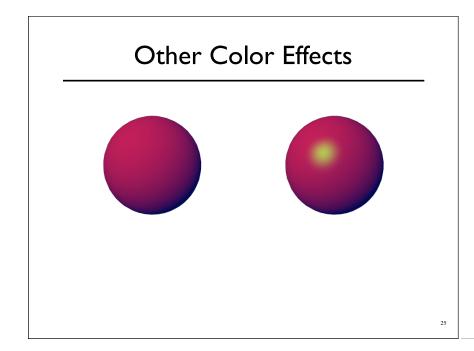

Summing the Parts


$$R = k_a I + k_d I \max(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}, 0) + k_s I \max(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}}, 0)^p$$

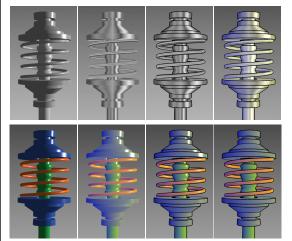
- \circ Recall that the $k_?$ are by wavelength
 - RGB in practice
- Sum over all lights

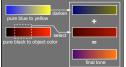

Anisotropy




22

Metal -vs- Plastic





Other Color Effects

Images from Gooch et. al, 1998 26

Measured BRDFs

BRDFs for automotive paint

Measured BRDFs

BRDFs for aerosol spray paint

Images from Cornell University Program of Computer Graphics

28

Measured BRDFs

BRDFs for house paint

29

Images from Cornell University Program of Computer Graphics

Measured BRDFs

BRDFs for lucite sheet

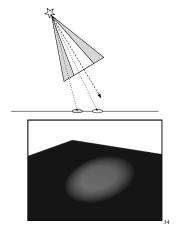
Images from Cornell University Program of Computer Graphics

Details Beget Realism

• The "computer generated" look is often due to a lack of fine/subtle details... a lack of richness.

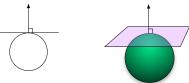
Direction -vs- Point Lights

- For a point light, the light direction changes over the surface
- For "distant" light, the direction is constant
- Similar for orthographic/perspective viewer


32

Falloff

- \circ Physically correct: $1/r^2$ light intensify falloff
 - Tends to look bad (why?)
 - Not used in practice
- \circ Sometimes compromise of $\,1/r\,$ used


Spot and Other Lights

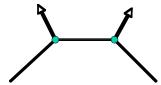
- Other calculations for useful effects
 - Spot light
 - Only light certain objects
 - Negative lights
 - etc.

Surface Normals

 The normal vector at a point on a surface is perpendicular to all surface tangent vectors

For triangles normal given by right-handed cross product

Flat Shading


- Use constant normal for each triangle (polygon)
 - Polygon objects don't look smooth
 - Faceted appearance very noticeable, especially at specular highlights
 - Recall mach bands...

36

Smooth Shading

- Compute "average" normal at vertices
- Interpolate across polygons
- Use threshold for "sharp" edges
 - Vertex may have different normals for each face

Gouraud Shading

- Compute shading at each vertex
 - Interpolate colors from vertices
 - Pros: fast and easy, looks smooth
 - Cons: terrible for specular reflections

Flat

Gouraud

Note: Gouraud was hardware rendered...

Phong Shading

- Compute shading at each pixel
 - Interpolate *normals* from vertices
 - Pros: looks smooth, better speculars
 - Cons: expensive

Gouraud

Phon

Note: Gouraud was hardware rendered..