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Chapter 1

Introduction

1.1 Purposes of this Course

Not every programmer really has to know how to build a compiler. Although this
course has the structure of compilers as its ostensible topic, my real agenda is
broader.

• Acquire tools for building textual interfaces or other programs that process
text.

• Understand the common structure of programming languages, so as better to
learn them and better design programs with language-like capabilities.

• Acquire better intuition about program performance.

• Acquire practice in reading, designing, and writing complex programs.

1.2 An Extremely Abbreviated History of Program-
ming Languages

• Initially, programs were either built into machines, or were entered by various
electro-mechanical means, such as punched cards or tape (e.g., the Analytical
Engine or the Jacquard loom), or wires and switches (e.g., the Eniac).

• Around 1944 came the idea of encoding programs as numbers (machine lan-
guage) stored as data in the machine, whence came the Machester Mark I and
the EDSAC.

• To make machine language easier to write, read, and maintain, assembly lan-
guages were introduced in the early 1950’s: symbolic names for instructions
and data locations, but still machine language—far from normal notation.

• FORTRAN: mid-1950’s. Stands for FORmula TRANslator. Allowed use of
usual algebraic notation in expressions; control structures (jumps, etc.) still
close to machine language.

7



8 CHAPTER 1. INTRODUCTION

• LISP: late 1950’s—dynamic, symbolic data structures.

• Algol 60: Europe’s answer to FORTRAN. Many syntactic features of modern
languages come from Algol 60. Also, it introduced the use of BNF (Backus-
Naur Form), inspired by Chomsky’s work, for describing syntax.

• COBOL (late 1950s): introduces business-oriented data structures, esp. records
(structs for you C-folk).

• 1960s saw proliferation of increasingly elaborate languages: e.g., APL (array
manipulation), SNOBOL (string manipulation), FORMAC (formula manipu-
lation).

• 1967–68: Simula 67, an Algol 60 derivate intended for writing discrete-event
simulations, introduces concept of inheritance, making it the first “object-
oriented” language in the modern sense.

• 1968: Algol 68 attempted to synthesize both the numerical, FORTRANish
line, the record-oriented line (such as COBOL), with dynamic (pointer-based)
data structures. It also tried to extend BNF into describing the entire lan-
guage. This last effort made it incomprehensible to many, and it faded away.
Nevertheless, many C/C++ features may be found in Algol 68. PL/1 was
IBM’s clunkier but more commercially successful attempt to meet the same
goals.

• 1968: announcement of the “Software Crisis.” Trend toward simple languages:
Pascal, Algol W, C (later).

• 1970s: emphasis on “methodology”—well-structured, modular programs. Sev-
eral experimental languages (like CLU). Smalltalk introduced, inspired in part
by Simula 67.

• Early 1970s: the Prolog language—declarative logic programming language.
Originally intended for natural language processing. Later, it is pushed as a
general-purpose high-level programming tool.

• Mid 1970s: ML (MetaLanguage) designed to implement LCF (Logic of Com-
putable Functions). This is a functional language with some interesting ideas—
type inference and pattern-directed function definition. Has evolved since then
and spawned various progeny (e.g., Haskell).

• Mid-1970s: Dept. of Defense discovers it is supporting over 500 computer lan-
guages. Starts Ada project to consolidate (and then object-oriented Ada 95).

• Increasing complexity in ideas of object-orientation until ca. 1980 with advent
of C++, which has continued to complexify.

• Reprising the move to simplicity in late 1970s, introduction of Java in early
1990s.
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1.3 Problems to be Addressed

• How do we describe a programming language?

– Users must be able to understand it unambiguously.

– Implementors must be able understand it completely.

• Given a description, how to implement it?

– How do we know we have it right?

∗ Testing

∗ Automating the conversion of description to implementation.

– How do we save work?

∗ Problem: multiple languages translated to multiple targets.

∗ Automation (as above)

∗ Designing so we can re-use pieces

∗ Interpretation

• How do we make the end result usable?

– Reasonable handling of errors.

– Detection of questionable constructs.

– Compilation speed.

∗ A standard approach: design language and translator to allow com-
piling programs in sections.

∗ Or, design translators to be really fast.

– Execution speed. Problem: can make program run faster, if we are willing
to have slower compilation. How do we make this trade-off?

– Binding time. Problem: how to handle program whose parts change
constantly, or even are unavailable at translation time?

1.4 Kinds of Translators

The purpose of translation is ultimately to execute a program. There is a spectrum
of approaches.

Compilation: source
translate
−→ real machine language

execute
−→ actions/results

Interpretation: source
translate
−→ virtual machine language

interpret
−→ actions/results

Direct Execution: source
interpret
−→ actions/results

Most C/C++ systems are examples of compilation. Lisp interpretation is (in
effect) an example of direct execution (the “translation” performed by the reader
is trivial). Early Java systems used interpretation; now they use just-in-time com-
pilation. These boundaries are muddy, however. Some machines, for example,
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implement their instruction set by interpretation. Their “real” program is a micro-
program that acts as an interpreter. For them, a C compiler is an example of an
interpreter!

All three of these strategies are specific to an implementation of a language;
they are not inherent in the language. There are no such things as “interpreted
languages” or “compiled languages.” For example, there are C interpreters, and
there are Lisp compilers.
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1.5 Programming Languages You May Not Know

C FORTRAN (OLD-STYLE) SORTING ROUTINE

C

SUBROUTINE SORT (A, N)

DIMENSION A(N)

IF (N - 1) 40, 40, 10

10 DO 30 I = 2, N

L = I-1

X = A(I)

DO 20 J = 1, L

K = I - J

IF (X - A(K)) 60, 50, 50

C

C FOUND INSERTION POINT: X >= A(K)

C

50 A(K+1) = X

GO TO 30

C

C ELSE, MOVE ELEMENT UP

C

60 A(K+1) = A(K)

20 CONTINUE

A(1) = X

30 CONTINUE

40 RETURN

END

C ----------------------------------

C MAIN PROGRAM

DIMENSION Q(500)

100 FORMAT(I5/(6F10.5))

200 FORMAT(6F12.5)

READ(5, 100) N, (Q(J), J = 1, N)

CALL SORT(Q, N)

WRITE(6, 200) (Q(J), J = 1, N)

STOP

END

comment An Algol 60 sorting program;

procedure Sort (A, N)

value N;

integer N; real array A;

begin

real X;

integer i, j;

for i := 2 until N do begin

X := A[i];

for j := i-1 step -1 until 1 do

if X >= A[j] then begin

A[j+1] := X; goto Found

end else

A[j+1] := A[j];

A[1] := X;

Found:

end

end

end Sort

∩◦ An APL sorting program
∇ Z ← SORT A

Z ← A[△| A]
∇

/* A naive Prolog sort */

/* permutation(A,B) iff list B is a

permutation of list A. */

permutation(L, [H | T]) :-

append(V,[H|U],L),

append(V,U,W),

permutation(W,T).

permutation([], []).

/* ordered(A) iff A is in ascending order. */

ordered([]).

ordered([X]).

ordered([X,Y|R]) :- X <= Y, ordered([Y|R]).

/* sorted(A,B) iff B is a sort of A. */

sorted(A,B) :- permutation(A,B), ordered(B).
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Chapter 2

Lexical Analysis

2.1 Introduction

The purpose of syntactic analysis is to analyze textual input so as to confirm that it
is syntactically well-formed—that it obeys certain general structural rules dictated
by the specification of the input language—and to convert it into a form that gives
later parts of the compiler convenient access to this structure.

For example, we might say that in Java a conditional statement can have the
form

if (Expression) Statement else Statement

In later parts of the compiler, the programmer might reasonably want a data struc-
ture that represents “an if statement” and that provides operations that return
“the then clause,” “the else clause,” and “the test” from this statement. These
operations would be awkward to implement if the data structure used were simply
a copy of the original text of the statement (a string). Instead, a tree-like form is a
better representation. This requires analyzing the original text into its constituent
grammatical parts.

This task is traditionally partitioned into lexical analysis— which breaks the
text down into the smallest useful atomic units, known as tokens, while throw-
ing away (or at least, putting to one side) extraneous information, such as white
space and comments—and parsing—which operates on tokens and groups them
into useful grammatical structures. There is no sharp distinction between these
two activities—I am happy to classify both under “syntactic analysis.” A single
monolithic subprogram could handle both simultaneously, as was done in very early
compilers. To a certain extent, we divide the tasks as we do to accommodate certain
techniques and certain automatic or semi-automatic tools.

We’re going to start with lexical analysis. The part of a compiler that performs
this task is called a lexical analyzer, tokenizer, or scanner. In brief outline,

• Regular expressions can describe a variety of languages (sets of strings), in-
cluding the set of atomic symbols of a typical programming language.

• Finite-state automata (FSAs) are abstract machines that also recognize lan-
guages.

15
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• Deterministic finite-state automata (DFAs) are a subset of finite-state au-
tomata that are easily converted into programs.

• There exists a translation from regular expressions into FSAs.

• There exists a translation from FSAs that happen to be nondeterministic into
DFAs (and hence into programs).

• The total process of conversion from regular expression to program is au-
tomatable. In fact, we’ll be using a couple of handy programs: Flex (for
producing scanners written in C or C++) and JFlex (for producing scanners
written in Java). These programs are really compilers themselves, translating
succinct descriptions of programming-language syntax (a piece of it, anyway)
into programs that “execute” these descriptions to extract tokens from the
input.

2.2 Tokens and Tokenizing

In the context of programming-language translation we use the term token to refer
to an abstraction for the smallest unit of program text that it is convenient when
describing the syntax of a language. You don’t want them to be too small. The
parsing techniques we’ll use in this class are designed to decide on what to do
next on the basis of the next token of input. If tokens are single characters, they
won’t generally contain enough information to make this decision. For example,
suppose a program has seen the characters ‘x+y’ and the next character is a blank.
This is insufficient information to determine whether ‘x+y’ is to be treated as a
subexpression, since if the next non-blank character is ‘*’, then y should be grouped
with whatever is after the asterisk. The lexer, on the other hand, can first eliminate
whitespace, making the decision easier. Another example is ‘x+y’ followed by a
‘+’. Here, the decision depends on whether the character immediately after the ‘+’
is another ‘+’. If the lexer has previously grouped all ‘++’s into single tokens, the
decision is easily made, with no ad hoc scanning ahead in special cases. Tokenizing
is thus the process of bridging the gap between the input (made of characters—too
small) and tokens.

As an example, a Java program (a Java source file) might contain the phrase

if(i== j)

z = 0; /* No work needed */

else

z= 1;

which a translating program sees as a sequence of characters:

\tif(i== j)\n\t\tz = 0; /* No work needed */\n\telse\n\t\tz= 1;

The job of the scanner is to convert this to a sequence of values such as this:

IF, LPAR, ID("i"), EQUALS, ID("j"), RPAR, ID("z"), ASSIGN,

INTLIT("0"), SEMI, ELSE, ID("z"), ASSIGN, INTLIT("1"), SEMI
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Here, the upper-case symbols denote syntactic categories (often internally repre-
sented as integers in an actual compiler). The syntactic categories are consumed by
the next stage of the compiler—the parser. When determining the structure of a
program, it is not particularly important which identifier or integer literal appears
at some point; the important point is that some identifier appears there. Hence,
scanners typically separate the syntactic category from what I’ll call the lexical
value of the token (shown in parentheses), which gives information that the parser
doesn’t need, but later stages of the compiler will. In our example, the lexical value
of an identifier happens to be the lexeme itself—the character string constituting
the token.

As you can see from the example, information unnecessary to the rest of the
compiler is filtered out entirely. All the blanks, tabs, newlines, and comments are
gone, so that the little discrepancies in spacing around the operators are removed.
This is a typical pattern in the translation process: each stage makes the job of
its successors easier by removing “noise” and guaranteeing that certain errors are
filtered out.

Actually, real scanners don’t entirely do away with whitespace. If it is going
to produce useful error messages, a compiler must keep track of where each token
appears so that it can “point” at the offending part of the program in the original
source file. Therefore, tokens often contain positional information—but just like
the semantic value, it is separated from other parts of the token so that it can be
referenced only when needed.

If we were building an actual scanner in Java, our tokens might be represented
by objects with fields like this:

class Token {

enum SyntacticCategory { IF, LPAR, ID, EQUALS, RPAR, ASSIGN, ... };

SyntacticCategory syntax;

Object value;

Location sourcePosition;

...

}

2.3 Simple Regular Expressions

In formal language theory (as computer scientists practice it, that is), a language
is a just set of strings—namely, all the valid sentences, utterances, or words in that
language. This definition does not really correspond to the normal informal-English
use of the word, but it can be useful for our purposes. The problem of creating a
lexical analyzer is that of writing a program to recognize and extract the valid
tokens making up some input text (or source). Now, we could just treat this as a
Small Matter of Programming, and write a program from scratch that performed
this task. The obvious approach might give you something like this (in Java):

int lastChar;

Token readToken () {

do {

lastChar = System.in.read ();
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if (lastChar == -1)

return makeToken (EOF);

} while (Character.isWhitespace (c));

if (lastChar == ’/’) {

lastChar = System.in.read ();

if (lastChar == ’*’) {

Read and discard comment
return readToken ();

} else if (lastChar == ’/’) {

Read and discard //-style comment.
} else

return makeToken (SLASH);

} else if ...

...

}

and so on. This can go on for quite a while and become rather tedious. In particular,
verifying that a program such as this in fact matches our notion of what the possible
tokens are is certainly not easy. On the other hand, if you are trying to squeeze
every possible bit of speed out of a lexical analyzer for some reason, you may be
driven to such lengths.

It would be nice if there were a way to describe the possible tokens we’re looking
for directly and to have this description converted into a program automatically,
so that it is a program that endures the tedium. For lexical analysis, a common
description language for this purpose is the regular expression.

A classical regular expression, R, describes a language (set of strings) L(R) (the
language of R), according to the following recursive definition:

• The empty string, ǫ, is a regular expression, denoting the set containing just
the empty string (L(ǫ) = {""}).

• Any single character, c, is a regular expression, denoting the set containing
just the one-character string containing c (L(c) = {"c"}).

• Concatenation: If R1 and R2 are two regular expressions defined by these
rules, thenR1R2 is a regular expression denoting the set L(R1R2) = {s1s2 | s1 ∈
L(R1) and s2 ∈ L(R2)}.

• Union: If R1 and R2 are two regular expressions defined by these rules, then
R1|R2 is a regular expression denoting the set L(R1|R2) = L(R1) ∪ L(R2).

• Closure: If R is a regular expression defined by these rules, then R∗ is a regular
expression1, denoting the set L(R∗) = L(ǫ) ∪ L(R) ∪ L(RR) ∪ L(RRR) ∪ · · ·
(the concatenation of zero or more strings, each from L(R)).

For convenience, we often augment these with

1The ‘*’ operator is known as the Kleene star, after the late Stephen C. Kleene, and pronounced
(in America, anyway) like “Claynee”.
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• Non-reflexive closure: If R is a regular expression defined by these rules, then
R+ is a shorthand for RR∗ (the concatenation of one or more strings, each
from L(R)).

• Optional: If R is a regular expression defined by these rules, then R? is a
shorthand for R|ǫ.

and the regular-expression analyzers we’ll talk about all allow standard shorthands
for unions of single-character tokens:

• The expression [c1c2 · · ·] is short for c1|c2| · · ·. The expression a-b in place
of one of the ci is short for the list of all one-character strings containing
characters between a and b, inclusive, in whatever character collating sequence
you are using (so [f-i] is the same as [fghi]).

• The expression [^c1c2 · · ·] is short for d1|d2| · · ·, where the di are all characters
that are not included among the ci.

• The expression ‘.’ generally means “the union of all single character strings
not including line-terminating characters.”

Normally, the closures and optional operators group more strongly than concate-
nation, which groups more strongly than union, and we use parentheses to clarify
or disambiguate, so that “ab—cd*” is equivalent to “(ab)—(c(d*)).” When writing
regular expressions that programs will actually act on, there is also a tedious set
of rules concerning escape sequences, so that we can describe strings that include
characters such ‘*’, ‘+’, ‘|’, etc.

This notation easily describes typical tokens in programming languages and
many other simple strings as well. Here are a few examples:

Expression Description

[-+/*=;,:()%^!@&|~\[\]] Valid one-character tokens in Java (the square brackets are
“escaped” with a backslash to indicate that they are to be
interpreted as ordinary characters).

[-+/*^\%|&]= All the complex assignment operators in Java.
[<>]=?|!= All the comparison operators in Java.
[1-9][0-9]* All decimal integer numerals in Java.
[a-zA-Z_][a-zA-Z0-9_]* All identifiers in C (a letter or underscore followed by zero or

more letters, digits, and underscores).
//.* //-style comments in C++ and Java.

2.4 Standard Extensions to Regular Expressions

These days, most programming languages provide some kind of regular-expression
matching facilities, sometimes built into the language (as in Perl), and sometimes
as part of their standard library (as in Java, C, or Python). Most extend the
simple expressions from §2.3 with additional ones for convenience. The following
are typical. Here, R and Ri represent regular (sub)expressions. We use Python
syntax.
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Expression Description

R{m} Short for R · · ·R
︸ ︷︷ ︸

m times

.

R{m,n}
R{, n}

Short for R · · ·R
︸ ︷︷ ︸

m times

R? · · ·R?
︸ ︷︷ ︸

n−m times

; that is, m to n occurrences

of R. By default, m = 0.
R{m, } Short for R{m}R∗; that is at least m occurrences of R.

\d Any single digit.
\s Any single whitespace character.
\S Any single non-whitespace character.

^ Matches the empty string, but only at the beginning of a
string or (if the right option is set) at the beginning of a line.
This is most useful in cases where one is searching through
a larger string for a substring that matches one’s regular ex-
pression.

$ Matches the empty string, but only at the end of a string or
(if the right option is set) at the end of a line.

\k Where k > 1 is a single digit, matches the same string that

was most recently matched by the kth parenthesized ex-
pression in this regular expression (the one started by the

kth left parenthesis counting from the left). For example
‘([a-z]+),\1’ matches “foo,foo” and “bar,bar”, but not
“foo,bar”.

One useful feature of most of these regular-expression matching facilities is the
ability to retrieve the string matched by some portion of the pattern—typically, by
a parenthesized subexpression. Thus, in Python, one can write things like this:

M = re.match(r’Name:\s*(\S+),\s*(\S+)\s*(.*)’, line)

# The r’...’ notation is a "raw string", in which back slashes and the

# characters they preceded are left unchanged.

# M is a "match object", or null (None) if line does not match.

if M:

print "Last name:", M.group(1)

print "First name:", M.group(2)

if M.group(3): # An empty string means "false"

print "Middle name(s):", M.group(3)

This ability to capture pieces of the match requires some additional description
of what an expression matches. For example, so far as the basic definitions in §2.3
are concerned, the regular expression “((\d+,)*)(\d+,?)(.*)” simply matches
the string “123,456”. But this doesn’t tell us what part of the string the first
parenthesized expression matched (.group(1) in Python notation). Any of the
following breakdowns might seem to be correct:

group(1) group(3) group(4)

"123," "456" ""

"123," "4" "56"

"" "123," "456"

"" "1" "23,456"
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Similarly, the regular expression “(ab|abcd).*” matches the string “abcd”, but
does the parenthesized expression match “ab” or “abcd”? These questions don’t
arise when simply asking whether a regular expression matches as a whole, but they
do arise when we ask for details of the match—of what we’ll later call a parse or
derivation of the target string according to the regular expression.

The usual way to deal with these questions is to adopt the “leftmost longest”
rule:

• The operators ‘*’, ‘+’, ‘?’, and ‘{· · ·}’ match greedily—that is, they match the
maximum possible number of repetitions that are allowed by their definition,
and that allow the rest of the match to succeed.

• When matching either R1 or R2 allows the entire pattern to match, a subex-
pression ‘R1|R2’ matches R1.

Thus, in the examples above, when “((\d+,)*)(\d+,?)(.*)” matches the string
“123,456”, groups 1, 3, and 4 match “123,”, “456”, and “”, respectively. It chooses
the first of the four alternatives for the content of the groups, and when “(ab|abcd).*”
matches the string “abcd”, the parenthesized group matches “ab.”

However, it is sometimes convenient to alter this rule, giving rise to so-called
lazy quantifiers. Thus, in Python

• The subexpression R∗? matches the fewest number of repetitions of R that
allow the containing pattern to match.

• The subexpression R+? is short for RR∗?.

• The subexpression R?? matches the empty string, unless it must match R in
order for the containing pattern to match.

So when “((\d+,)*?)(\d+?,?)(.*)” matches the string “123,456”, groups 1, 2,
and 4 match “”, “1”, and “23,456”, respectively.

2.5 Using Regular Expressions

For the purposes of building programming-language translators, regular expressions
provide a tool for describing the various tokens of interest. Let’s consider a simple
language (call it SL/1) containing the following tokens:

• The single-character tokens

+ - * / = ; , ( ) > <

• The multi-character operators

>= <= -->

• The keywords

if def else fi while

• Identifiers (a letter followed by 0 or more letters and digits).
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• Decimal numerals (one or more digits).

Basically, we convert a string into tokens with a left-to-right scan, where at each
point, we match the longest possible legal token (the maximum munch rule). The
following characters are ignored, except as delimiters for tokens:

• All whitespace (blanks, tabs, newlines, and a few others).

• All comments, which begin with ‘#’ and proceed to the next end of line.

2.5.1 Using regular expressions in general-purpose languages

The precise details depend on the particular language or library one uses to write the
translator. Figure 2.1 illustrates one approach in Java, using the java.util.Scanner
class, and for contrast, Figure 2.3 shows essentially the same analyzer presented as
a Python generator.

2.5.2 A special-purpose tool: Flex

There are number of tools that are essentially domain-specific languages tailored to
the purpose of lexical analysis or of writing simple programs that basically perform
transformations of streams of tokens. Here, we describe a venerable example: Flex,
an open-source regular-expression-based lexer generator2. It converts description
files into C or C++ programs that provide a simple interface suitable for general
use, but also designed to supply input to parsing tools that we’ll see later.

Figure 2.4 shows our lexer as it might be expressed in Flex. Here, the possible
lexemes are separted, and for each one, the programmer may supply an arbitary
action (in C or C++) to be performed when the lexeme is encountered. The outside
world sees a simple functional interface, in which calls to yylex provide the syntactic
categories (represented as simple integers), and any additional lexical information
is generally provided by means of some sort of global variable.

The emphasis in Flex is on performance. On one platform3, for example, on
a randomly-generated file containing 166,000 lexemes on 4,700,000 lines containing
41MB of data, I saw:

Version Time (sec) µsec/byte

Java (Figure 2.1) 101 2.5
Python (Figure 2.3) 47 1.1
Flex (Figure 2.4) 4 0.098

To make this possible, Flex’s regular expressions are restricted for the most part
to the simple ones in §2.3. For most uses, this is not a big limitation.

2.6 Finite-state Machines

The tools described in the preceding sections suffice to write lexical analyzers, but
it is also useful (and certainly traditional) to look into what goes on behind the

2
Flex is based on the Lex program developed by AT&T in the early days of Unix (M. E. Lesk,

“Lex—a lexical analyzer generator.” Computing Science Technical Report 39, AT&T Bell Lab-
oratories, Murray Hill, N.J., 1975.) Flex is the work of Vern Paxson, now a professor at UC
Berkeley.

3A Sun Ultra 40 M2, running Solaris.
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import java.io.Reader;

import java.util.Scanner;

import java.util.HashMap;

import java.util.regex.Pattern;

/** A Lexer produces a stream of tokens taken from an arbitrary Reader

* supplied to the constructor, in response to repeated calls to the

* Lexer’s nextToken routine. */

public class Lexer {

/** The possible syntactic categories of the tokens returned by

* nextToken. The arguments to the enumerals are the lexemes

* corresponding to the Category, when these are unique. The

* Categories EOF and ERROR are artificial; they mark the end

* of the token stream and erroneous tokens, respectively. */

public static enum Category {

GTEQ(">="), LTEQ("<="), GT(">"), LT("<"), ARROW("-->"),

PLUS("+"), MINUS("-"), STAR("*"), SLASH("/"), ASSIGN("="),

LPAR ("("), RPAR (")"), SEMI(";"), COMMA(","),

IF("if"), DEF("def"), ELSE("else"), FI("fi"), WHILE("while"),

IDENT(null), NUMERAL(null), EOF(null), ERROR (null);

final private String lexeme;

Category (String s) {

lexeme = s;

}

}

/** The lexeme read by the last call to nextToken. Undefined after

* nextToken returns EOF or before nextToken is called. Contains

* the erroneous character after nextToken returns ERROR. */

public String lastLexeme;

/** Mapping of lexemes represented by Categories with single

* members to those categories. */

private static HashMap<String, Category> tokenMap =

new HashMap<String, Category> ();

static {

for (Category c : Category.values ())

tokenMap.put (c.lexeme, c);

}

/** Input source. */

private Scanner inp;

Continued

Figure 2.1: An SL/1 lexical analyzer that uses a Java Scanner (part 1).
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Continued from Figure 2.1.

/** A pattern that always matches the next token or erroneous

* character, except at end of file. Group 1, if present is

* whitespace, group 2 is an identifier, group 3 is a numeral. */

private static final Pattern tokenPat =

Pattern.compile ("(\\s+|#.*)" +

"|>=|<=|-->|if|def|else|fi|while" +

"|([a-zA-Z][a-zA-Z0-9]*)|(\\d+)" +

"|.");

/** A new Lexer taking input from READER. */

public Lexer (Reader reader) {

inp = new Scanner (reader);

}

/** Read the next token, storing it in lastLexeme, and returning

* its Category. Returns EOF at end of file, and ERROR for

* erroneous input (one character). */

public Category nextToken () {

if (inp.findWithinHorizon (tokenPat, 0) == null)

return Category.EOF;

else {

lastLexeme = inp.match ().group (0);

if (inp.match ().start (1) != -1)

return nextToken ();

else if (inp.match ().start (2) != -1)

return Category.IDENT;

else if (inp.match ().start (3) != -1)

return Category.NUMERAL;

Category result = tokenMap.get (lastLexeme);

if (result == null)

return Category.ERROR;

else

return result;

}

}

}

Figure 2.2: SL/1 lexical analyzer in Java, part 2.
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import re

r"""lexer.py: Lexical Analyzer Module.

A typical use might be this:

for category, lexeme in lexer.readTokens (sys.stdin):

# Process token with given category and lexeme.

"""

# Syntactic categories. For best performance, compare against these using

# the ’is’ operator, not ’=’

GTEQ = ">="; LTEQ = "<="; GT = ">"; LT = "<"; ARROW = "-->";

PLUS = "+"; MINUS = "-"; STAR = "*"; SLASH = "/"; ASSIGN = "="

LPAR = "("; RPAR = ")"; SEMI = ";"; COMMA = ","

IF = "if"; DEF = "def"; ELSE = "else"; FI = "fi"; WHILE = "while";

IDENT = "IDENT"; NUMERAL = "NUMERAL"; ERROR = "ERROR"

_tokenMap = {

GTEQ: GTEQ, LTEQ: LTEQ, ARROW: ARROW, GT: GT, LT: LT,

PLUS: PLUS, MINUS: MINUS, STAR: STAR, SLASH: SLASH, ASSIGN: ASSIGN,

LPAR: LPAR, RPAR: RPAR, SEMI: SEMI, COMMA: COMMA,

IF: IF, DEF: DEF, ELSE: ELSE, FI: FI, WHILE: WHILE }

def readTokens(file):

"""A generator that returns pairs (C, L) consisting of the lexemes

in FILE (L) and their syntactic categories (C)."""

for token in re.finditer (r"(\s+|#.*)"

r"|>=|<=|-->|if|def|else|fi|while"

r"|([a-zA-Z][a-zA-Z0-9]*)|(\d+)"

r"|.",

file.read ()):

L = token.group(0)

i = token.lastindex

if i == 1:

pass

elif i == 2:

yield IDENT, L

elif i == 3:

yield NUMERAL, L

else:

yield _tokenMap.get(L, ERROR), L

Figure 2.3: An SL/1 lexical analyzer module in Python.



26 CHAPTER 2. LEXICAL ANALYSIS

/* A Flex version of our lexical analyzer (in C++). */

/* Various declarations may go before the first %% */

%{

/* Code in %{ ... }% is inserted directly into the C/C++ program */

/* See Figure 2.5 */

#include "lexer.h"

%}

%option noyywrap

%%

[ \t\n\r\f] { }

"#".* { }

">=" { yylval = ">="; return GTEQ; }

"<=" { yylval = "<="; return LTEQ; }

"-->" { yylval = "=="; return ARROW; }

[-+<>*/=();,] { yylval = yytext; return yytext[0]; }

"if" { yylval = "if"; return IF; }

"def" { yylval = "def"; return DEF; }

"else" { yylval = "else"; return ELSE; }

"fi" { yylval = "fi"; return FI; }

"while" { yylval = "while"; return WHILE; }

[a-zA-Z][a-zA-Z0-9]* { yylval = yytext; return IDENT; }

[0-9]+ { yylval = yytext; return NUMERAL; }

. { yylval = yytext; return ERROR; }

%%

/** Everything after the second %% goes into the generated program. */

void initLexer (FILE* file)

{

yy_switch_to_buffer (yy_create_buffer (file, YY_BUF_SIZE));

}

int nextToken ()

{

return yylex ();

}

Figure 2.4: A Flex lexer for SL/1, generating C++.



2.6. FINITE-STATE MACHINES 27

#include <string>

#include <cstdio>

using namespace std;

enum { GTEQ = 128, LTEQ, ARROW, IF, DEF, ELSE, FI, WHILE,

IDENT, NUMERAL, ERROR };

extern int nextToken ();

extern void initLexer (FILE* file);

/* Must be supplied by the calling program. */

extern string yylval;

Figure 2.5: Interface to the program in Figure 2.4.

#include <iostream>

#include "lexer.h"

string yylval;

char* names[] = {

"GTEQ", "LTEQ", "ARROW", "IF", "DEF", "ELSE", "FI", "WHILE",

"IDENT", "NUMERAL", "ERROR", "0"

};

main (int argc, char* argv[])

{

if (argc <= 1)

initLexer(stdin);

else

initLexer(fopen (argv[1], "r"));

while (1) {

int c = nextToken ();

if (c == 0) break;

if (c < 128)

cout << "’" << yylval << "’" << endl;

else

cout << names[c - 128] << ": " << yylval << endl;

}

}

Figure 2.6: Trivial main program that uses the Flex lexer from Figure 2.4.
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scenes—at how regular expressions may be turned into programs for recognizing
what they describe.

A standard approach is to organize such a program around an abstraction known
as a finite-state automaton or finite-state machine. These machines have a number
of applications in theoretical computer science, electrical engineering, and software
design.

2.6.1 Deterministic recognizers

In its simplest form, the deterministic finite-state automaton (DFA) (or . . . recognizer,)
a machine, M , contains the following ingredients:

• A finite set S of states. In the simplest case, the items in this set needn’t have
any properties other than being distinguishable from each other.

• A member s0 ∈ S, called the start state.

• A finite alphabet of symbols, Σ.

• A transition function, f : S × Σ → S. For each state, σ, and symbol x, this
function gives a next state.

• A set F ⊂ S of final states.

(A theoretician usually states this as “a deterministic finite-state recognizer is a
tuple M = (S,Σ, s0, f, F ) such that. . . .”) Such a recognizer describes a language, a
set of strings over the alphabet Σ—just as a regular expression does—by providing
a means to recognize certain strings.

Consider an n-character string σ = σ1σ2 · · · σn (where all the σi ∈ Σ). To test
this string, the machine reads the characters from left to right, maintaining an
internal state, that can change at each character. Specifically,

1. M starts in state s0.

2. Then, for each symbol σi in turn, the machine transitions to state si, using
the rule si = f(si−1, σi).

3. If at any time in this process, f(si−1, σi) is undefined
4, then M rejects (does

not recognize) σ.

4. Otherwise, M recognizes (or accepts) σ iff sn ∈ F , that is, if its last state is
one of the designated final states.

Just as for regular expressions, we’ll use the notation L(M) to denote the language
of all strings recognized by M .

4Some authors avoid this problem by requiring that f be a total (everywhere-defined) function.
This is always possible since you can add an error state, e 6∈ F, such that f(e, x) = e for all x ∈ Σ.
However, the addition of an error state leads to crowded diagrams, so consider our use of partial
transition functions as a kind of abbreviation.
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As an example, consider the problem of recognizing all strings of that contain
the substring “aab” somewhere within them and that contain only a’s and b’s. For
this problem, we’ll take

S = {start, a, aa, aab}

Σ = {a, b, c}

s = start,

F = {aab}

(As you can see, Σ contains an extra character c, which will not appear in any
accepted string). To describe f , the transition function, we’ll use the following
state-transition diagram:

start a aa aab
a

b

a

b

b

a [ab]

(2.1)

The nodes (circles) in this diagram represent states. The start state is marked
by an “arrow from nowhere.” Final states are denoted by double circles. I’ve given
the states suggestive labels, although none are required (e.g., state aa is “the state in
which no aab has yet been seen, but we’ve just seen two a’s in a row”). The arrows
denote the values of the transition function, f . For example, the arrow labeled ‘a’
from state a to state aa indicates that f(a, ‘a’) = aa. We’ll use the same bracket
notation as for regular expression to indicate transitions between states that occur
on multiple characters, as in the self-loop on state aab.

Given the string “babaabab”, the machine above will go through the sequence
of states

start
b
−→ start

a
−→ a

b
−→ start

a
−→ a

a
−→ aa

b
−→ aab

a
−→ aab

b
−→ aab.

Since it ends in aab, a final state, M accepts “babaabab.” Given the empty string,
on the other hand, M ends up in start, which is not a final state, and so rejects the
string. Given “babaa,” it ends in state aa, which again is not a final state, and so
it rejects this string. Finally, given the string “aabcaab,” M will reach state aab,
but then, encountering the character ‘c’ (for which there is no transition defined),
will stop and reject the string (step 3 in the recognition procedure).

2.6.2 Non-deterministic recognizers

Consider the problem of building a recognizer for strings matching the regular ex-
pression ‘(01)*0*10*1’. It’s easy to see how to match ‘(01)*’:

A B
0

1
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and also ‘0*10*1’:

C D E

0

1

0

1

but it is less obvious how to put them together, since it is not clear when the
recognizer is “in the (01)* part” and when it is “in the 0*10*1 part.” Suppose
though, that we expand the definition of finite-state automata to make both choices,
in effect, like this:

A B
0

1

C D E

0

1

0

1

0

1

(2.2)

This is almost the same as just concatenating the two machines together with some
extra edges, except that states A now has multiple edges emerging from it with the
same label. The result is a nondeterministic finite-state automaton (NFA). We say
that an NFA accepts a string iff there is some path—some sequence of edges—whose
edge labels are the string and that ends on an accepting state. As long as at least
one such path ends up in a final state, it doesn’t matter how many others crash and
burn. So, given the string “010101”, there is a partial path

A
0
−→ C

1
−→ D

0
−→ D

1
−→ E

but there is no transition out of E for the trailing “01”, so this path fails. Never-
theless, the machine accepts “010101” because the alternative path

A
0
−→ B

1
−→ A

0
−→ C

1
−→ D

0
−→ D

1
−→ E

does consume the entire string and ends up in a final state.
We can simplify this still more, removing one edge, by an ǫ-transition:

A B
0

1

C D E

0

1

0

1

ǫ

(2.3)

The meaning of this transition is that when in state A, the machinemay transition to
state C without consuming a character of input. The introduction of ǫ transitions
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allows “infinite loops,” of course, as in this rather silly machine for recognizing
{"a"}:

A B

ǫ

a

While it is true that there is an infinite path through this machine that cycles
endlessly back to state A without consuming input, the machine will still accept ‘a’
because there are also paths (actually infinitely many) that do consume the string
and that end up in final state B.

Earlier, I described a DFA as a tuple M = (S,Σ, s0, f, F ). An NFA is likewise a
tuple, M ′ = (S,Σ ∪ {ǫ}, s0, f, F ), except that now, the transition function, f maps
states and characters in the alphabet (plus the special “character” ǫ) to sets of
possible next states, or as mathematicians write,

f : S × Σ ∪ {ǫ} → 2S .

(2S is the powerset of S, often written P(S).)

2.6.3 From DFAs to programs

Transforming a DFA into a program is pretty straightforward. Consider machine
(2.1) in §2.6.1. We can convert this into the simple C++ program shown in Fig-
ure 2.7 (Java is very similar).

The program in Figure 2.7 is sufficiently stylized that we can accomplish the
same thing in a table-driven fashion, as shown in Figure 2.8. This program rep-
resents the transition function as a 2-dimensional table indexed by state and by
character (after first converting the alphabet into integer 0’s and 1’s). In this par-
ticular example, we did not have to worry about states with no transition on one of
the characters ‘a’ or ‘b’. If there had been such transitions, we’d simply introduce
an additional non-final state, ERROR, as described in the footnote in §2.6.1. The
Flex program produces essentially this kind of program, having first converted its
regular expressions into DFAs (see §2.6.6.)

2.6.4 From NFAs to programs

As indicated in §2.6.2, NFAs differ from DFAs in having transition functions that
return sets of states, rather than individual states, and that allow transitions on
ǫ (the empty string) as well as ordinary characters. This suggests a relatively
straightforward modification to the program in Figure 2.8, along the lines shown
in Figure 2.9, which shows a program modeled on NFA (2.2). Here, an int serves
to represent a set of states. Any given set of states is represented as the bitwise
or of the corresponding bits, so that, for example, the set {C,B,D}—consisting of
states number 1, 2, and 3—would be represented as the integer 14 (21 + 22 + 23 or
1<<B|1<<C|1<<D). Had there been more states than the bit-size of int, we would
have had to use a more general “bitvector” data structure.



32 CHAPTER 2. LEXICAL ANALYSIS

bool recognize1 (string& s) {

enum { START, A, AA, AAB } state;

state = START;

for (int i = 0; i < s.size (); i += 1) {

switch (state) {

case START:

switch (s[i]) {

case ’a’: state = A; continue;

case ’b’: continue;

default: return false;

}

case A:

switch (s[i]) {

case ’a’: state = AA; continue;

case ’b’: state = START; continue;

default: return false;

}

case AA:

switch (s[i]) {

case ’a’: continue;

case ’b’: state = AAB; continue;

default: return false;

}

case AAB:

switch (s[i]) {

case ’a’: case ’b’: continue;

default: return false;

}

}

}

return state == AAB;

}

Figure 2.7: C++ program implementing DFA (2.1) in §2.6.1. For robustness, this
program contains ‘default’ clauses for characters that are not in the alphabet.
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enum State { START = 0, A, AA, AAB, NUM_STATES } state;

typedef int SetOfStates;

/* The set of possible final states, represented as an

* integer in which the kth bit (1<<k) is set if state #k

* is in the set. */

static const SetOfStates FINAL_STATES = 1<<AAB;

static const State START_STATE = START;

static const State transition[][2] = {

/* ’a’ ’b’ */

{ A, START }, /* START */

{ AA, START }, /* A */

{ AA, AAB }, /* AA */

{ AAB, AAB } /* AAB */

};

bool recognize2 (string& s) {

state = START_STATE;

for (int i = 0; i < s.size (); i += 1) {

int c;

switch (s[i]) {

case ’a’: c = 0; break;

case ’b’: c = 1; break;

default: return false;

}

state = transition[state][c];

}

return (1<<state & FINAL_STATES) != 0;

}

Figure 2.8: A table-driven version of Figure 2.7.
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The recognize3 procedure maintains the set of possible states, given the char-
acters it has read so far, starting with a set containing just the start state. For
each input character, it scans the set of states it might currently be in, and accu-
mulates (into the variable newStates) the possible next states, as given in the table
transitions.

The machine in Figure 2.9 does not make use of ǫ transitions, which the program
accommodates by means of a separate epsilonClosures table. The substitute
tables shown in Figure 2.10 model NFA (2.3), which does make use of them. The
value of epsilonClosures[S] for any state S is the set containing S and all states
that the machine can reach from S using (one or more) ǫ transitions5.

As an example, consider the result of executing recognize3 on the string
0101011. Using the original set of tables in Figure 2.9, we get the following se-
quence of state sets:

{A}
0
−→ {B,C}

1
−→ {D,A}

0
−→ {B,C,D}

1
−→ {D,A,E}

0
−→ {B,C,D}

1
−→ {D,A,E}

1
−→ {D,E},

which recognize3 represents internally as the sequence of integers:

1
0
−→ 6

1
−→ 9

0
−→ 14

1
−→ 25

0
−→ 14

1
−→ 25

1
−→ 24.

Using the alternative tables from Figure 2.10, we get the following sequence of
state sets:

{A,C}
0
−→ {B,C}

1
−→ {D,A,C}

0
−→ {B,C,D}

1
−→ {D,A,C,E}

0
−→ {B,C,D}

1
−→ {D,A,C,E}

1
−→ {D,E},

or internally,

5
0
−→ 6

1
−→ 13

0
−→ 14

1
−→ 29

0
−→ 14

1
−→ 29

1
−→ 24.

2.6.5 From NFA to DFA

I don’t normally juxtapose abstract processes (like automata making state transi-
tions) with the nitty-gritty details of programs that represent such processes, so
it might seem incongruous that I showed the sequence of internal variable values
used in recognize3 along with the state sets being represented. But in this case,
there was a point. There are only a finite number of possible values for the states
variable in recognize3, namely integers in the partially open range [0, 25). For a
given value of states and of s[i], the program always computes the same value for
newStates. But that means that recognize3 is effectively doing exactly the same
thing as our DFA implementation in Figure 2.8! In other words, we could use the
numbers 0–31 as our states, and build a deterministic table with entries like this
(for the tables from Figure 2.9):

5OK, a more elegant way to say this (which avoids having to say “containing S and”) is that
the closure is the set of all states reachable from S using zero or more ǫ transitions, but I find that
many people have trouble with zero, for some reason.



2.6. FINITE-STATE MACHINES 35

enum State { A = 0, B, C, D, E, NUM_STATES } state;

typedef int SetOfStates;

static const SetOfStates epsilonClosures[NUM_STATES] = {

1<<A, 1<<B, 1<<C, 1<<D, 1<<E

};

static const SetOfStates FINAL_STATES = 1<<E;

static const SetOfStates transitions[][2] = {

/* ’0’ ’1’ */

{ 1<<B | 1<<C, 1<<D }, /* A */

{ 0, 1<<A }, /* B */

{ 1<<C, 1<<D }, /* C */

{ 1<<D, 1<<E }, /* D */

{ 0, 0 } /* E */

};

bool recognize3 (string& s) {

SetOfStates states;

states = epsilonClosures[A];

for (int i = 0; i < s.size (); i += 1) {

int c;

SetOfStates newStates;

newStates = 0;

switch (s[i]) {

case ’0’: c = 0; break;

case ’1’: c = 1; break;

default: return false;

}

for (State p = A; p != NUM_STATES; p = (State) (p+1))

if (states & 1<<p)

newStates |= transitions[p][c];

for (State p = A; p != NUM_STATES; p = (State) (p+1))

if (newStates & 1<<p)

newStates |= epsilonClosures[p];

states = newStates;

}

return (states & FINAL_STATES) != 0;

}

Figure 2.9: A table-driven program for direct implementation of NFA (2.3). It

represents sets of states with ints: bit k is 1 (where bit 0 is units bit) iff the kth

state is in the set (where the 0th state is A). This version has the machinery to
deal with ǫ transitions, but does not use them.
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static const SetOfStates epsilonClosures[NUM_STATES] = {

1<<A|1<<C, 1<<B, 1<<C, 1<<D, 1<<E

};

static const SetOfStates FINAL_STATES = 1<<E;

static const SetOfStates transitions[][2] = {

/* ’0’ ’1’ */

{ 1<<B, 0 }, /* A */

{ 0, 1<<A }, /* B */

{ 1<<C, 1<<D }, /* C */

{ 1<<D, 1<<E }, /* D */

{ 0, 0 } /* E */

};

Figure 2.10: Alternative tables for the recognize3 program in Figure 2.9 that
include ǫ transitions, as used in NFA (2.3).

static const int transition[][2] = {

/* ’0’ ’1’ */

{ 0, 0 }, /* 0: { } */

{ 6, 8 }, /* 1: { A } */

...

{ 4, 9 }, /* 6: { B, C } */

...

{ 14, 24 }, /* 9: { D, A } */

This construction is completely general: any NFA may be converted to a DFA in
this fashion. Therefore, NFAs are no more powerful than DFAs in the languages
they can recognize. Because the state numbers stand for subsets of the NFA’s states,
we call this the subset construction.

Of course, in general not all subsets of states can be reached in a running pro-
gram. Thus, in NFA (2.2), no string will ever cause the machine to be in the set of
states {A,B}. So typically, we renumber the states when doing this transformation
so as to minimize the size of the resulting state table by leaving out unreachable
rows.

2.6.6 From regular expressions to FSAs

So far, we’ve looked at regular expressions and finite-state automata as two alter-
native means of recognizing languages. As it happens, however, the two are closely
related. Any simple regular expression from §2.3 (and most from §2.4) is convertible
into a NFA. This is a rather pretty and classical construction, so let’s take a look
at it.

We proceed recursively, guided by the definition of what a regular expression
can be. For each of the possible forms of basic regular expression, R, we’ll construct
a NFA, M , with a single final state, such that L(R) = L(M). Table 2.1 shows the
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machines that result from each possible kind of regular expression. We use ellipses,
as in:

R R

to denote, respectively, a machine that recognizes R and the same machine, but
with all its states made non-final. That is, each ellipse stands for some collection
of states and arrows, and the two circles inside the ellipse denote the starting and
(single) final states of the machine (which may be the same state). The table shows
only basic constructs. Extensions to cover things such as R+, [a-z], or R? are
reasonable straightforward (especially since those are all just shorthands anyway).

This construction allows us to convert any regular expression into a NFA, which
may be further converted, as described in §2.6.5, to a DFA. The procedures outlined
in §2.6.4 and §2.6.3 can then convert these machines into programs. There is, in fact,
a construction that will convert any NFA into a regular expression6, demonstrating
that NFAs, DFAs, and regular expressions are all equivalent in their ability to
recognize languages.

The construction is a slight variation on one due to Ken Thompson7 and was
used for searches in a text editor that applied the resulting NFA directly, without
converting it to a DFA. To make this task simpler, the algorithm guarantees that
each state has either a single outgoing transition on an input character from Σ or else
at most two ǫ transitions. Its correctness depends on there being no outgoing states
from any final state. Any number of variations on this construction are possible.

2.7 Theoretical Limitations

A DFA has a finite number of states, and therefore a finite memory. As a result,
there are many languages that simply cannot be recognized by a pure DFA, and
therefore not by a regular expression or NFA, either. For example, consider the
set {anban | n ≥ 0}, the set of all strings of as followed by an equal number of as,
separated by a single b. In order for a DFA to recognize this set, it would have to
be in a different state after reading the string ak for each possible value of k (since
only after reading k repetitions of a would it be correct to accept the suffix bak).
But that’s impossible, since k can have any of an infinite number of values, but the
DFA has only a fixed, finite number of possible states. In other words, “DFAs (and
NFAs) cannot count.”

Indeed, for any DFA (or NFA or regular expression) that accepts an infinite
number of strings, there is some minimum length, M , such that any string longer
than M that the machine accepts must have the form uxv, where u, x, and v are
strings, x is not empty, the length of ux is ≤M , and the machine accepts all strings
of the form uxnv. This result is known as the pumping lemma.

Classically, the term “regular expression” refers only to those expressions de-

6It is rather tedious, however, so just take my word for it, if you don’t mind.
7K. Thompson, “Regular expression search algorithm,” Comm. ACM 11:6 (1968), pp. 419-422.
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Expression Machine

ǫ

a
a

R1 R2 R1 R2

R1 | R2

R1

R2

ǫ

ǫ

ǫ

ǫ

R∗ R

ǫ

ǫ

Table 2.1: Recursive construction of NFA from a regular expression.
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scribed in §2.3. Unfortunately for those of us who are easily confused, it is common
these days to give the label “regular expression” to constructs that go beyond these
in fundamental ways, and can do things that NFAs cannot. For example, the Python
regular expression r"(a*)b\1" recognizes anban; the ‘\1’ matches the same string
matched by the parenthesized subexpression. This non-linear pattern is not a clas-
sical regular expression. I’d prefer to have it called a “pattern,” but I suppose I’ll to
compromise on “Python regular expression” (more commonly called, alas, a “Perl
regular expression”).

2.8 Flex Revisited

2.8.1 Implementation

The Flex program described in §2.5.2 converts the regular expressions it is supplied
into a DFA for recognizing the language they collectively describe, using essentially
the transformations described in §2.6.6 and §2.6.5, with some additional optimiza-
tions and modifications.

So far, we have concentrated on producing machines that simply tell whether
a certain string is in the desired language—a plain yes/no determination. But
consider the following stripped-down excerpt from the Flex program in Figure 2.4:

" " { } /* 1 */

"-" { return ’-’; } /* 2 */

"-->" { return ARROW; } /* 3 */

"if" { return IF; } /* 4 */

[a-zA-Z][a-zA-Z0-9]* { return IDENT; } /* 5 */

and the input “if x --> --whilevar”. This input does not, in fact, match any of
the patterns (as far as any individual pattern is concerned, it has “trailing junk”).
But the first call to the generated recognizer function (called yylex) is supposed to
give us the IF token. In other words, it is supposed to match a prefix of the input.
Furthermore, it is not enough to know that some prefix of the input matched one
of these patterns; the program needs to know which pattern in order to execute the
proper return statement (or nothing for white space). Finally, there are ambiguities
to resolve. The prefix “if” matches both the IF and the IDENT pattern. Which do
we select? When we get to it, a prefix of the string “-->” matches “-” and another
matches “-->”. Again, which do we select? These are questions that have been
unimportant up to now. Flex happens to resolve them with two rules:

• Maximum munch: match the longest possible prefix of the input at each point.

• Order determines precedence: given two patterns that match equal-length
prefixes, choose the first pattern.

Some simple modifications to our procedures so far solve both problems by
imposing these two rules. Consider the following NFA for recognizing any of the
tokens above. I’ve used multiple final states in this machine, one for each rule, and
used the “[· · ·]” shorthand (which technically stands for multiple edges between
nodes).
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1

-
2

- - >
3

i f
4

[a-zA-Z] [a-zA-Z0-9]
5

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

Now convert this NFA into a DFA using the subset construction from §2.6.5. I’ll
label only the nodes that correspond to subsets containing final states with those
final states.

1

2
- >

3

5
f

4|5

5

[a-zA-Z0-9]

 

-

i

[a-hj-zA-Z]
[a-gh-zA-Z0-9]

[a-zA-Z0-9]

We push input characters through this DFA as before, but with a couple of
changes:

1. We continue to push characters into the machine until it rejects the string or
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we reach the end of the input.

2. We keep track of the last time the machine was in a final state. When we
arrive at a point where the machine rejects the next character, we back the
input up so that the machine is in this state.

3. The output of the algorithm is then the label on this final state. If the state is
labeled with more than one label, the result is the smallest label (correspond-
ing to the earlier rule).

Of course, if this procedure does not result in the machine being in a final state, we
report an error.

For example:

• The string “- xy” gets rejected when we reach the blank (denoted ‘ ’). Since
the last final state traversed before this happens is labeled 2, the program
reports that we should execute rule 2 (return ’-’).

• The string “--xy” gets rejected when we reach ‘x’. Again, the last final state
traversed before this happens is labeled 2. We back the input up to that point
(“unreading” the second ‘-’ and report that we should execute rule 2.

• The string “-->y” gets rejected when we reach ‘y’. This time, the last final
state traversed is labeled 3, indicating rule 3.

• The string “if x” gets rejected at the blank, at which point the last final
state is labeled 4|5 . By provision 3 above, we report that we should execute
the lowest-numbered rule, 4 (return IF).

• The string “ifx” ends us up at the end of the input in a final state labeled 5,
so we report rule 5 (return IDENT).

2.8.2 Start states

Because Flex produces a state machine, it is able to provide some state-machine
like features. Specifically, a user may specify a set of alternative starting states.
Any pattern may be specified to apply only in certain states, and any action, or
other code outside the lexer, may include a statement that selects which starting
state will be used for the next match.

For example, suppose you have a language in which the phrases @decimal,
@octal, and @hex don’t return tokens, but cause subsequent numerals to be in-
terpreted a decimal, octal, or hexadecimal, respectively, with decimal being the
default. You could write

%s OCTAL, HEX

%%

... other tokens

"@octal" { BEGIN OCTAL; }
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"@decimal" { BEGIN INITIAL; }

"@hex" { BEGIN HEX; }

<INITIAL>[0-9]+ { ... }

<OCTAL>[0-7]+ { ... }

<HEX>[0-9][0-9]a-fA-F]* { ... }

... other tokens

2.9 Implementing More General Patterns

Since §2.7 tells us that finite automata cannot recognize languages that Python (or
Perl) patterns can, it follows that matching these expressions requires a different
approach from what we used for Flex. A popular approach seems to be to perform
the match by interpreting the pattern directly and using a form of backtracking
search. To match an expression R1|R2, for example, the matcher recursively first
tries to match R1, and if that fails, it backs up to the same point in the input and
then tries matching R2. To match a parenthesized expression, (R), it matches R
and saves the bounds of the resulting match. To match a non-linear pattern such
as the ‘\1’ in “(a*)b\1” (from §2.7) after matching the ‘b’, the matcher simply
retrieves the last match for a* and compares that with the next part of the input
string.

As we’ve already seen, the generality of this implementation scheme comes with
a performance cost.



Chapter 3

Parsing

3.1 Introduction

In Chapter 2, I said that the purpose of syntactic analysis is to analyze textual
input to detect and filter out errors and to convert into a form suitable for further
processing. That chapter went on to describe lexical analysis, a piece of the larger
task of syntactic analysis that is conveniently described and implemented using
regular expressions or other pattern languages. In this chapter, we attack parsing,
the name given to the rest of this problem.

The effect of lexical analysis is basically to change the alphabet of symbols
of our language so that it consists of bigger “characters” (tokens), which we call
terminal symbols. We do this largely for the convenience of our tools. The parsing
techniques we’ll use in this class are designed to decide on what to do next on the
basis of the next token of input. If tokens are single characters, they won’t have
enough information to decide. For example, suppose a Java translator has seen the
characters ‘x+y’ and the next character is a blank. This is insufficient information
to determine whether ‘x+y’ is to be treated as a subexpression, since if the next
non-blank character is ‘*’, then y should be grouped with whatever is after the
asterisk. The lexer, on the other hand, can first eliminate whitespace, making the
decision easier. Another example is ‘x+y’ followed by a ‘+’. Here, the decision
depends on whether the character immediately after the ‘+’ is another ‘+’. If the
lexer has previously grouped all ‘++’s into single tokens, the decision is easily made,
with no ad hoc scanning ahead in special cases.

Of course, the various flavors of regular expression and automata discussed in
Chapter 2 already provide a way of describing and recognizing languages over an
alphabet. Why not just use them once again to do the rest of syntactic analysis?
First, as we saw in §2.7, regular expressions and their ilk are not well-suited to
recognizing certain common features of programming languages. For example, Java
allows expressions such as ‘(a)’, ‘((a))’, and so forth, but not ‘(a))’. However, as
we saw, a pattern of the form (k · · · )k is not describable with plain regular expres-
sions. Second, the emphasis so far has been on recognizing languages, but we also
want to recover the inner structure of our input as well. The use of parenthesized
groups suffices for simple tasks, but is clumsy for full-fledged analysis of recursively
defined languages.

43
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3.2 Production Rules

We can address these problems by moving to a different way of describing languages:
using systems of rules that allow us to name constituent parts of a string. For
example, here is a description of floating-point literals in a Java-like language:

Grammar 3.1. Floating-point literals, version 1.

digit: ’0’

digit: ’1’

digit: ’2’
...

digit: ’9’

int: digit

int: digit int

sign: ’+’

sign: ’-’

sign:

exponent: ’e’ sign int

exponent:

literal: sign int ’.’ int exponent

Each line ‘A : α0 · · ·αn’ can be read as “an A may be formed from an α0 followed
by an α1,. . . , followed by an αn.” When n is 0, there are no right-hand side symbols
(see the last definitions of sign and expon, for example), so that we have “A may be
formed from the empty string” in such cases. The symbols that are defined to the left
of some arrow are called nonterminal symbols (or nonterminals or metavariables)
and the other symbols are called terminal symbols (or terminals). Each nonterminal
symbol thus stands for a language; we typically single out one of them—called the
start symbol—to be the principal language described by the rules (in this case, the
start symbol would be literal). We call an entire collection of rules a grammar.

To save vertical space, we often use a simple shorthand for multiple rules with
the same left-hand side:

digit: ’0’ | ’1’ | ’2’ | ... | ’9’

int: digit | digit int

sign: ’+’ | ’-’ |

expon: ’e’ sign int |

literal: sign int ’.’ int expon

and I will often use ǫ to make empty right-hand sides more visible, as in

sign: ’+’ | ’-’ | ǫ

I’ve taken this notation (or meta-syntax to use the fancy terminology) from bison,
a parser-generator program. Other variations are possible. Some authors use ‘→ ’,



3.2. PRODUCTION RULES 45

literal

sign

-

int

digit

1

int

digit

2 .

int

digit

3

int

digit

2

expon

e

sign int

digit

5

Figure 3.1: Parse tree for ‘-12.32e5’, using Grammar 3.1

and the classic Algol 60 report used ‘::=’. All these notations go by the name of
Backus-Naur Form or BNF 1.

These rules make it convenient to talk about “the sign part” of the literal, or
“the exponent part.” Given a string, say ‘-12.32e5’, we can say the string is in the
language described by “literal” because we can break it down according to the rule
for “literal” like this:

− 12 . 32 e5
︷︸︸︷

sign
︷︸︸︷

int
︷︸︸︷

‘.’
︷︸︸︷

int
︷ ︸︸ ︷
expon

and each of these five pieces matches either a matching terminal symbol or some
right-hand side of the indicated nonterminal. For example,

e 5
︷︸︸︷

‘e’
︷︸︸︷

sign
︷︸︸︷

int

By repeating this process, we get the tree structure shown in Figure 3.1, which
matches the entire string and shows the entire breakdown. The process of perform-
ing this matching of rules with terminal symbols is called parsing. The resulting
tree is called a parse tree. The leaves of this tree are nonterminals that produce the
empty string and terminal symbols.

1Sometimes called Backus Normal Form, but this name is inappropriate, I think, since the
productions are “normalized” only in the rather weak sense of having a single nonterminal on the
left-hand side.
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3.3 Derivations

Most compilers don’t really deal with parses in the form of parse trees, but are more
concerned with what rules were applied. The information content is actually exactly
the same. Suppose we perform a preorder traversal of the parse tree in Figure 3.1
and for each nonterminal we visit, print out the rule that was used to produce its
children. We get the following list:

1. literal: sign int ’.’ int expon 8. digit: ’3’

2. sign: ’-’ 9. int: digit

3. int: digit int 10. digit: ’2’

4. digit: ’1’ 11. expon: ’e’ sign int

5. int: digit 12. sign:

6. digit: ’2’ 13. int: digit

7. int: digit int 14. digit: ’5’

To see how much information is present here, let’s go back the other way, and
re-create the tree from this list of applied rules. The top node is the start symbol,
‘literal’. We now apply step (1), which tells us that the children of the root node are
instances of ‘sign’, ‘int’, the terminal symbol ‘.’, ‘int’, and then ‘expon’. Since we
did a preorder traversal to get this tree, we know that step (2) has to apply to the
leftmost unprocessed nonterminal, an instance of ‘sign’, telling us that its child is
the terminal symbol ‘-’. Step (1) produced two instances of ‘int’, but since we know
that we got this list of rules from a preorder traversal, we know that step (3) has
to apply to the leftmost of those instances, giving children ‘digit’ and ‘int’. If you
continue this process, you should see that we recover the parse tree in Figure 3.1.

The list of productions 1–14 defines a leftmost derivation of the string ‘-12.32e5’
from the grammar. The term “leftmost” refers to the fact that each step applies
to the leftmost nonterminal instance in the partially completed tree that has not
yet been assigned a rule. Another way of presenting the same derivation is as a
sequence of sentential forms:

literal
1

=⇒ sign int . int expon
2

=⇒ - int . int expon
3

=⇒ - digit int . int expon
4

=⇒ - 1 int . int expon
5

=⇒ - 1 digit . int expon
6

=⇒ - 1 2 . int expon
7

=⇒ - 1 2 . digit int expon
8

=⇒ - 1 2 . 3 int expon
9

=⇒ - 1 2 . 3 digit expon
10
=⇒ - 1 2 . 3 2 expon

11
=⇒ - 1 2 . 3 2 e sign int

12
=⇒ - 1 2 . 3 2 e int

13
=⇒ - 1 2 . 3 2 e digit

14
=⇒ - 1 2 . 3 2 e 5

A sentential form, in other words, is just a sequence of symbols, both terminals
and nonterminals. The ‘⇒’ symbol may be read as “derives in one step” (in this
derivation, I’ve notated each ‘⇒’ with the number of step from the previous list of
productions for this string). We keep going until there are no nonterminals left (a
sentential form containing no nonterminals is also called a sentence). The symbol

‘
∗

=⇒’ means “derives in 0 or more steps”, and ‘
+

=⇒’ means “derives in 1 or more

steps.” Thus ‘literal’
∗

=⇒ ‘-12.32e5’ and ‘literal’
+

=⇒ ‘-12.32e5’ and ‘sign int . int

expon’
+

=⇒ ‘-1 digit . int expon’.
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As long as we are consistent in how we apply rules, we can always effect this
transfer between parse trees and derivations. For example, if we perform a preorder
tree traversal of the parse tree, except that we visit children from right to left, rather
than left to right, we get what is called a rightmost derivation. For the example
above, we would apply the same rules the same number of times, but in a different
order:

1, 11, 13, 14, 12, 7, 9, 10, 8, 3, 5, 6, 4, 2

If this looks a little strange, consider the sequence in reverse (appropriately called
a reverse rightmost or canonical derivation, which goes backwards, “unapplying”
each production in turn.) The first rule in the reversed sequence handles the ‘-’
at the beginning of the string. The next rule (step 4 in the leftmost derivation)
handles the ‘1’ digit—the second character of the string. Here is the whole reverse
rightmost derivation as a sequence of sentential forms, showing the corresponding
step in the leftmost derivation above each (reversed) arrow:

- 1 2 . 3 2 e 5
2
⇐= sign 1 2 . 3 2 e 5

4
⇐= sign digit 2 . 3 2 e 5

6
⇐= sign digit digit . 3 2 e 5

5
⇐= sign digit int . 3 2 e 5

3
⇐= sign int . 3 2 e 5

8
⇐= sign int . digit 2 e 5

10
⇐= sign int . digit digit e 5

9
⇐= sign int . digit int e 5

7
⇐= sign int . int e 5

12
⇐= sign int . int e sign 5

14
⇐= sign int . int e sign digit

13
⇐= sign int . int e sign int

11
⇐= sign int . int expon

1
⇐= literal

So the reverse rightmost derivation reconstructs the parse tree from the bottom up
and from left to right, whereas the leftmost (forward) derivation constructs it top
down from left to right.

In principle, all kinds of other derivations are possible, but we will be chiefly
interested in the leftmost and (in its reverse form) the rightmost derivation. Further-
more, although technically the term “derivation” refers to a sequence of sentential
forms, we will use both these and sequences of productions (under a fixed, specified
derivation order) interchangeably.

3.4 Ambiguity

It may not be obvious, but the grammar for floating-point literals that we’ve been
using has the property that there is a unique parse tree that matches any valid
string. This isn’t true of all grammars. For example, suppose we tried to describe a
slightly different kind of floating-point literal, in which either the integer part or the
fraction part, but not both may be empty. One way to do so would be to replace
the definitions of ‘int’ and ‘literal’ as follows:

optint: digit optint |

int: digit optint
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optintdigit

2

int

optintdigit

2

optint

literal2

int

digit optint

1 .

(b)

sign expon

literal2

optint

digit optint

1 .

(a)

exponsign

Figure 3.2: Two parses for ‘1.2’ under the ‘literal2’ grammar

literal2: sign optint ’.’ int expon | sign int ’.’ optint expon

(I use ‘literal2’ to distinguish this language from the preceding). But now there are
two ways to match the string ‘1.2’: either the ‘1’ or the ‘2’ can be an ‘optint’. These
two choices correspond to the two different parse trees shown in Figure 3.2, with
two different corresponding leftmost derivations:

(a) literal2 ⇒ sign optint . int expon ⇒ optint . int expon

⇒ digit optint . int expon ⇒ 1 optint . int expon

⇒ 1 . int expon ⇒ 1 . digit optint expon

⇒ 1 . 2 optint expon ⇒ 1 . 2 expon ⇒ 1 . 2

(b) literal2 ⇒ sign int . optint expon ⇒ optint . int expon

⇒ digit optint . optint expon ⇒ 1 optint . optint expon

⇒ 1 . optint expon ⇒ 1 . digit optint expon

⇒ 1 . 2 optint expon ⇒ 1 . 2 expon ⇒ 1 . 2

We say that the grammar is ambiguous: there exists at least one string for which
there are two parses. For every parse tree there is still exactly one leftmost (or right-
most) derivation, but there are multiple parse trees, and hence multiple derivations.

We say that the grammar is ambiguous, not the language, because there is an
unambiguous grammar for this language: simply replace the definitions for ‘literal2’
with

literal2: sign int ’.’ int expon

literal2: sign ’.’ int expon | sign int ’.’ expon

(There are, in fact, languages that have only ambiguous grammars, but in practice,
one doesn’t encounter them in compilers.)

3.5 Context-Free Grammars

So far, the grammars I’ve written have obeyed the following ordering restrictions:
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1. Any nonterminal in the right-hand side of a rule, except possibly one that
appears at the right end of the rule, is completely defined in previous rules.

2. If a nonterminal appears as the rightmost symbol on a right-hand side, it is
either previously defined or it is the same as the left-hand side symbol of the
rule.

That is, the following grammar would not qualify:

A: ’x’ B

B: ’y’ B ’z’

The first rule mentions a nonterminal that is not yet defined. That problem could
be cured by making it the last rule. However, the second rule cannot be fixed: the
nonterminal B appears in the middle of a rule with B on the left side.

Grammars that do obey these restrictions are known as regular or Type 3 gram-
mars. It’s fairly easy to see that they describe the same languages as do regular
expressions—that any such grammar can be converted to a regular expression and
vice-versa. As such, they are subject to the same descriptive limitations as finite-
state automata. Likewise, grammars obeying a slightly different constraint can eas-
ily be converted to NFAs, and are also regular. Specifically, any grammar in which
only the last symbol on a right-hand side may be a nonterminl are also regular.

Unfortunately, common programming languages are clearly non-regular. For
example, the languages you are probably familiar with require that parentheses be
balanced. But that is just a slightly modified form of the anban example from
§2.7. Now, it’s true that in practice, one could limit programmers to, say, 20 levels
of parenthesis nesting, and that such a language could be described by a regular
expression or regular grammar. However, you would find it a rather horrendous
grammar.

If we remove the regular-grammar restrictions, we get a class of grammars known
as the Type 2 or context-free grammars, which will be our next main object of
study2.

Such grammars can “count” arbitrarily high, at least under the right circum-
stances. For example, here is a language of correctly nested parentheses:

parens: parens ’(’ parens ’)’ | ǫ

It recognizes the empty string, ‘()’, ‘()()’, ‘(())’, ‘(()(()))’, etc.

2In case you are interested, there are also Type 1 and Type 0 languages. Type 1 (or context-

sensitive) languages can have more than one symbol on the left, as long as the number of symbols
on the right is at least as large as the number on the left in each production (an extra rule to allow
‘ǫ’ in the language is also allowed). Type 0 (or recursive) languages, the most general, allow one
or symbols on the left, and any number on the right of each production. Any language that is
theoretically recognizable by a computer is of Type 0.
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3.6 Syntax-Directed Translation

Finding a derivation would merely be an interesting academic exercise (and we
haven’t even gone into the “how” of it yet) were it not for the fact that we can use
it for our Larger Purpose of translating programming languages. In some sense, a
parse tree itself is a translation of a programming language into a form that makes
it easy to get at the logical units of programs (the “then part” of a conditional, for
example). However, we can use the parsing process to direct the formation of other
kinds of translation (in fact, we usually do; parse trees are not usually produced
directly). For example, suppose I wanted to translate floating literals into doubles.
I could define how to do so by attaching semantic actions to the grammar rules
that assign semantic values to the nodes of the parse tree. I’ll use a slight variation
of the grammar in §3.2:

Grammar 3.2. Floating-point literals, version 2.

digit: ’0’ { $$ = 0; }
...

digit: ’9’ { $$ = 9; }
int: digit { $$ = $1; }
int: int digit { $$ = 10*$1 + $2; }
sign: ’+’ { $$ = 1; }
sign: ’-’ { $$ = -1; }
sign: { $$ = 1; }
exponent: ’e’ sign int

{ $$ = $2 * $3; }
exponent: { $$ = 1; }
frac: digit { $$ = 0.1 * $1; }
frac: digit frac { $$ = 0.1 * ($1 + $2); }
literal: sign int ’.’ frac exponent

{ $$ = $1 * ($2 + $4) * 10**$5; }

Each semantic rule is to be read as assigning a semantic value to each node in
the parse tree3. Usually, the parse tree stays implicit, and we just use the values
attached to it. For a rule of the form A : α1 · · ·αn, the notation $$ means “the
value assigned to a node produced by this rule” and $k means “the value that was
assigned to the instance of αk that a node produced by the rule that created it.”
Here, I have taken the liberty to introduce ** as the exponentiation operator. I
have also taken the liberty of re-arranging the definition of int according to our
new freedom to write context-free grammars.

Consider parsing the string “-12.32e5” with this grammar. Figure 3.3 shows the
resulting parse tree. The values after the colons are the semantic values assigned

3Here, I have used the notation of yacc and bison for the semantic rules (the things in curly
braces). Another style you’ll sometimes see is to use the names of the nonterminals in the semantic
rules, as in

frac: digit frac { frac0 = 0.1 * (digit + frac1); }

Since we’ll be using bison, let’s stick with its notation here to avoid confusion.
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literal: -1232000

sign: -1

-

int: 12

int: 1

digit: 1

1

digit: 2

2 .

frac: 0.32

digit: 3

3

frac: 0.2

digit: 2

2

expon: 5

e

sign: 1 int: 5

digit: 5

5

Figure 3.3: Parse tree and computed semantic values for ‘-12.32e5’, using Gram-
mar 3.2

by the rules of the grammar (the values assigned to $$). For example, the root
node’s value was computed as −1232000 = −1 · (12 + 0.32) · 105, according to the
production for ‘literal’ in Grammar 3.2.

3.6.1 Abstract syntax trees

The semantic values we attach to nodes need not be restricted to simple strings or
numbers. I suggested earlier that in compilers, we are often interested in converting
an input program into a some kind of tree form that allows convenient access to
the natural subparts of the constructs in a program. Parse trees have this property,
but generally contain extraneous information (for example, they include all the
original terminal symbols). They also have structures that reflect the details of the
grammars we use to recognize them, rather than the purposes we have for them.
It is common, therefore, to use semantic actions to produce trees corresponding to
an abstraction of the grammar we use. Whereas we call the grammar a concrete
syntax of our language, we call these alternative trees abstract syntax trees or ASTs
for short.

For example, consider this, possibly familiar, syntax:
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Grammar 3.3. Lisp subset reader.

expr : SYM { $$ = makeAtom ($1); }
| NUM { $$ = makeAtom ($1); }
| ’(’ SYM list ’)’ { $$ = cons ($2, $3); }

list : expr { $$ = cons ($1, EMPTYLIST); }
| expr list { $$ = cons ($1, $2); }

Here, makeAtom simply converts a lexeme into a leaf node (or atom in Lisp termi-
nology) and cons prepends its first argument to its second (a list). This gives the
familiar Lisp representation of trees, where the node label is the head of the list and
the list of children is the tail. The input string “{(+ 3 (- 2 x))}” is converted by
this grammar into the Lisp structure:

+ 3

- 2 x

3.6.2 Actions without values

In fact, it isn’t necessary to compute semantic values at all. We can also use
syntax-directed translation as a kind of control structure that, like some kind of
for loop, recurses over the structure of our input and performs indicated actions.
For example, consider this grammar for converting certain Lisp-style expressions
(in which operators come first, as in ‘(+ 3 (- 2 x))’ into unparenthesized postfix
notation, in which operators come last, as in ‘3 2 x - +’.

Grammar 3.4. Lisp subset grammar for postfix printing.

expr : SYM { printf ("%s ", $1); }
| NUM { printf ("%s ", $1); }
| ’(’ SYM list ’)’ { printf ("%s ", $2); }

list : expr { /* do nothing */ }
| expr list { /* do nothing */ }

In this grammar, we assume that SYM (symbol) and NUM (numeral) denote tokens
defined by a lexical analyzer, which provides them with semantic values that are
simply the lexemes themselves (so that the parser sees the input string ‘123’ as a
NUM whose value is simply the string “123”. The input string “(+ 3 (- 2 x))”
turns into the tokens

’(’ SYM+ NUM3 ’(’ SYM− NUM2 SYMx ’)’ ’)’

(the subscripts show the semantic values attached by the lexical analyzer). We get
the parse tree shown in Figure 3.4
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expr

( SYM: +

list

expr

NUM: 3

list

expr

( SYM: -

expr

NUM: 2

list

expr

SYM: x ) )

Figure 3.4: Parse tree for converting Lisp expression (+ 3 (- 2 x)) to postfix
using Grammar 3.4.

For this definition to work, we have to make an assumption about the order in
which the semantic actions attached to the productions of the grammar are applied.
Previously, we only needed to assume that the actions for all children of a node were
applied before that of the node itself. Now we have to assume explicitly that we
traverse the parse tree in postorder, thus executing the actions for a node’s children
from left to right and then immediately executing the parent node’s action. If you
do that for the tree in Figure 3.4, you’ll see that no values will get attached to the
internal nodes of the tree (there are no assignments to $$), but the (C-style) print
statements that are executed will print “3 2 x - +”.

I’ve described the application of semantic rules as tree traversals. Again, how-
ever, the actual implementation in real compilers typically performs the actions as
it is forming the parse tree (and then dispenses with actually creating the parse
tree!).
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3.7 Some Common Idioms

Lists. Certain patterns of BNF arise over and over. This is particularly true of
lists. Here are a few standard varieties of “list of items,” where the symbols item
and sep are either terminal symbols or are defined elsewhere. Some of these come
in two versions, depending on the type of grammar you need and details of how you
create lists. See §3.8 for more details. I have supplied sample semantic actions for
actually accumulating a list, where EMPTY is the empty list, prepend adds an item

to the beginning of a list, and append adds one to the end.

Sequence of 0 or more items.

/* Left-recursive version */

list0 : /* empty */ { $$ = EMPTY; }

| list0 item { $$ = append ($1, $2); }

/* Right-recursive version */

list0 : /* empty */ { $$ = empty list; }

| item list0 { $$ = prepend ($1, $2); }

Sequence of 1 or more items.

/* Left-recursive version */

list1 : item { $$ = prepend ($1, EMPTY); }

| list1 item { $$ = append ($1, $2); }

/* Right-recursive version */

list1 : item { $$ = prepend ($1, EMPTY); }

| item list1 { $$ = prepend ($1, $2); }

Sequence of 1 or more items, separated by seps.

/* Left-recursive version */

list1 : item { $$ = prepend ($1, EMPTY); }

| list1 sep item { $$ = append ($1, $3); }

/* Right-recursive version */

list1 : item { $$ = prepend ($1, EMPTY); }

| item sep list1 { $$ = prepend ($1, $3); }

Sequence of 0 or more itemss, separated by seps.

list0 : /* empty */ { $$ = EMPTY; }

| list1 { $$ = $1; }
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Infix expressions. Programming languages in the Algol family (in which I in-
clude C, C++, and Java) support some kind of infix expressions in which the oper-
ators have several different precedences and in which expressions involving a single
type of operator associate or group in different ways. Thus, the Java expression
“x-y*z-q” is interpreted as if written “(x-(y*z))-q” and not “(x-y)*(z-q)” or
“x-((y*z)-q),” because ‘*’ has higher precedence than ‘-’ and ‘-’ associates to the
left.

To express these features in BNF, consider an expression such as

a-y/z-q/r**s**(t-1)/u

(the operator ** is used in languages such as Fortran, Ada, or Python for exponen-
tiation; it has higher precedence than / and associates to the right). This expression
has the form of a list of one or more terms (indulge me and call them term0s) sep-
arated by ‘-’ operators. Each of these term0s is a list of one or more of another
kind of term (term1s, let’s say), separated by ‘/’ operators, and each term1 is a list
of one or more of what are called primaries, separated by ‘**’ operators. These
primaries, finally, are numerals, identifiers, or entire expressions in parentheses. In
other words, the grammar for these simple expressions is simply the repeated ap-
plication of the “Sequence of 1 or more items, separated by. . . ” syntax described
above. We use the left- or right-recursive variations to capture grouping. Here’s an
example, in the form of a calculator:

Grammar 3.5. Simple expression grammar as a calculator

expr : term0 { $$ = $1; }

| expr ’-’ term0 { $$ = $1 - $3; }

term0 : term1 { $$ = $1; }

| term0 ’/’ term1 { $$ = $1 / $3; }

term1 : primary { $$ = $1; }

| primary "**" term1 { $$ = pow ($1, $3); }

primary : IDENTIFIER { $$ = currentValue ($1); }

| NUMERAL { $$ = stringToNumber ($1); }

| ’(’ expr ’)’ { $$ = $2; }

(The function names are intended to be self-explanatory.) Because the rule for ’-’ is
left recursive (i.e., the symbol being defined appears on the left), in the expression
a-b-c, expr must match a-b and term0 must match c in the second rule for expr.
This perfectly captures left associativity. The reverse is true for the ‘**’ operator.

Grammar 3.5 calculates values, whereas a compiler writer would be more inter-
ested in producing ASTs, as in this version:
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Grammar 3.6. Simple expression grammar producing ASTs
expr : term0 { $$ = $1; }

| expr ’-’ term0 { $$ = makeTree(MINUS, $1, $3); }

term0 : term1 { $$ = $1; }

| term0 ’/’ term1 { $$ = makeTree(DIVIDE, $1, $3); }

term1 : primary { $$ = $1; }

| primary "**" term1 { $$ = makeTree (EXPON, $1, $3); }

primary : IDENT { $$ = makeVar ($1); }

| NUMERAL { $$ = makeLiteral ($1); }

| ’(’ expr ’)’ { $$ = $2; }

(makeTree, makeVar, and makeLiteral create AST nodes; the details are unimpor-
tant.) The purely syntactic part of the grammar, as you can see, has not changed.
By the way, this example also illustrates the difference between ASTs and parse
trees. Here are the parse tree for “x-y” (on the left) and the AST calculated by
this grammar:

expr

expr

term0

term1

primary

IDENT: x -

term0

term1

primary

IDENT: y

-

IDENT: x IDENT: y

3.8 Top-down Implementation

Context-free grammars resemble recursive programs: they are certainly recursively
defined, and one can read a rule ‘A : BCD’ as “to parse an A in the input, first
parse a B, then a C, and then a D.” This insight leads to a rather intuitive form
of parsing known as recursive descent.
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3.8.1 From grammars to programs: recursive descent

Consider the following grammar:

Grammar 3.7. A really simple expression grammar

p: e ’⊣’
e: t e2 { $$ = addTerm ($1, $2); }
e2: ’+’ e { $$ = $2; }
e2: ǫ { $$ = NULL; }
t: ’(’ e ’)’ { $$ = $2; }
t: i { $$ = makeVar ($1); }

Here, ‘i’, ‘+’, ‘(’, ‘)’, and ‘⊣’ (end of file) are terminal symbols. We define

Tree addTerm (Tree T1, Tree T2)

{

if (T2 == NULL)

return T1;

else

return makeTree (’+’, T1, T2);

}

Let’s assume that there is a function nextToken() that returns the syntactic
category of the next token of the input (one of i, ’+’, ’(’, ’)’, and ’⊣’), a
function scan() that advances to the next token of input, and another version of
scan that takes an argument and is defined:

Tree scan(x) {

Tree t = semantic value of current token;

if (nextToken () == x) {

scan (); return t;

} else

ERROR ();

}

Our strategy will be to produce a set of functions, one for each nonterminal sym-
bol. The body of each function will directly transcribe the grammar rules for the
corresponding nonterminal. To start with, we’ll ignore the semantic actions:

/* p: e ’⊣’ */

p () { e (); scan (’⊣’); }

/* e: t e2 */

e () { t (); e2 (); }
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/* e2: ’+’ e | ǫ */

e2 () {

if (nextToken () == ’+’) {

scan (’+’); e ();

} else if (nextToken () == ’⊣’ || nextToken () == ’)’) {

/* ǫ */

} else

ERROR ();

}

/* t: ’(’ e ’)’ | i */

t () {

if (nextToken () == ’(’) {

scan (’(’); e (); scan (’)’);

} else if (nextToken () == i) {

scan (i);

} else

ERROR ();

}

If you examine this closely, you should see each grammar rule transcribed into
program text. Nonterminals on the right-hand sides turn into (recursive) function
calls; terminals turn into calls to ‘scan’. To parse a program (to start things off),
you simply call ‘p()’. If you trace the execution of this program for a given sentence
and look at the order in which calls occur, comparing it to the parse tree for that
sentence, you will see that the program essentially performs a preorder walk (also
called “top down”) of the parse tree, corresponding to a leftmost derivation of the
tree.

Adding in semantic actions complicates things only a little. Now we make the
functions return the semantic value for their tree:

Tree p () { Tree t1 = e (); scan (’⊣’); return t1; }

Tree e () {

Tree t1, t2;

t1 = t (); t2 = e2 (); return addTerm (t1,t2);

}

Tree e2 () {

Tree t2;

if (nextToken () == ’+’) {

scan (’+’); t2 = e (); return t2;

} else if (nextToken () == ’⊣’ || nextToken () == ’)’) {

/* ǫ */ return NULL;

} else

ERROR ();

}
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t () {

Tree t1, t2;

if (nextToken () == ’(’) {

scan (’(’); t2 = e (); scan (’)’); return t2;

} else if (nextToken () == i) {

t1 = scan (i); return t1;

} else

ERROR ();

}

3.8.2 Choosing a branch: using FIRST and FOLLOW

I still haven’t told you where the tests for the ‘if’ statements in these functions came
from. In general, you’ll be faced with several rules for a given nonterminal—let’s
say A : α1, A : α2, etc.—where each αi is a string of terminal and nonterminal
symbols. For Grammar 3.7, for example, when A is e2, we have

α1 = ’+’ e

α2 = ǫ

Recursive-descent parsers work by choosing (“predicting”) which of the αi to pursue
based on the next, as yet unscanned input token. Assuming first that none of the
αi can produce the empty string, we can choose the branch of the function for A
that corresponds to rule A→ αi if the next symbol of input is in FIRST(αi), which
(when αi does not produce the empty string) is defined as “the set of terminal
symbols that can begin a sentence produced from αi”. As long as these sets of
symbols do not overlap, we can unambiguously choose which branch to take.

Suppose one of the branches, say αk, can produce the empty string, in which
case we define FIRST(αk) to contain the empty string as well as any symbols that
can begin αk. We should choose the αk branch if either the next input symbol is in
FIRST(αk) or the next input symbol is in FOLLOW(A), which is defined as “the
set of terminal symbols that can come immediately after an A in some sentential
form produced from the start symbol.” Clearly, we’re in trouble if more than one αi

can produce the empty string, so for this translation to recursive descent to work,
we must insist that at most one branch can produce the empty string.

So in summary, if our grammar contains the following production for nontermi-
nal A (possibly among others):

A : α1 . . . αn

then in the procedure we write for A, there will be a piece that says (in effect)

if (nextToken () ∈ FIRST(α1 . . . αn)

|| (ǫ ∈ FIRST(α1 . . . αn) && nextToken () ∈ FOLLOW(A))) {

α′

1; . . . α
′

n;
}

where each α′

i is the program for recognizing αi. That is,
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• If αi is a terminal symbol, then α′

i is scan(αi).

• If αi is a nonterminal symbol, then α′

i is αi().

If there is no overlap in any of the sets of terminal strings produced by the
procedure above, then we say that the grammar is LL(1), meaning that it can be
parsed Left to right to give a L/eftmost derivation, looking ahead at most 1 symbol
of input.

3.8.3 Computing FIRST

For any sequence of symbols (terminals and nonterminals), x = x1x2 · · · xn, we can
define FIRST(x) recursively as follows:

FIRST(x1x2 · · · xn) =







{ǫ}, if n = 0;
FIRST (x1), if n ≥ 1 and ǫ 6∈ FIRST (x1);
(FIRST(x1)− {ǫ}) ∪ FIRST(x2 · · · xn),

otherwise.







(3.1)

So once we have computed FIRST(a) for every individual symbol a, we can compute
FIRST(x) for any sequence of symbols x = x1 · · · xn. For example, if we know that
FIRST(b) = {’+’, ’-’, ǫ} and that FIRST(c) = {’ID’, ’(’}, then we can compute

FIRST (bcb) = FIRST (b)− {ǫ} ∪ FIRST(cb)

= {’+’, ’-’} ∪ FIRST (c)

= {’+’, ’-’, ’ID’, (}

Thus, all that remains is to calculate FIRST on individual symbols.

Our procedure for doing so is an example of a fixed-point iteration: starting with
an initial guess, we apply an updating algorithm that produces a closer guess, and
keep repeating this step until our guess stops changing. In detail:

# Compute initial guess

for every terminal symbol τ:
initialize FIRST(τ) = { τ }

for every nonterminal symbol A:
initialize FIRST(A) = { }

# Compute fixed point

while True:

for every production A : α1 · · ·αn in the grammar:

Union the value of FIRST(A) with current guess of

FIRST(α1 · · ·αn)

if the values of FIRST were not changed in the iteration:

break

Applied to Grammar 3.7, we get the following sequence of guesses:
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FIRST Iteration #

0 1 2 3

’⊣’ {’⊣’ } {’⊣’ } {’⊣’ }

’+’ {’+’ } {’+’ } {’+’ } {’+’ }

’(’ {’(’ } {’(’ } {’(’ } {’(’ }

’)’ {’)’ } {’)’ } {’)’ } {’)’ }

i {i } {i } {i } {i }

p {} {} {} {’(’, i }

e {} {} {’(’, i } {’(’, i }

e2 {} {’+’, ǫ } {’+’, ǫ } {’+’, ǫ }

t {} {’(’, i } {’(’, i } {’(’, i }

3.8.4 Computing FOLLOW

As with FIRST, we use a fixed-point iteration to compute the value of FOLLOW
for any grammar, assuming we’ve already computed FIRST. Again, we start with
a guess at FOLLOW (namely, that FOLLOW(A) = {} for all nonterminals), and
then refine it. Here’s the full process:

for every nonterminal, A:
initialize FOLLOW(A) = { }

while True:

for every production of the form A : α1 · · ·αkBαk+2 · · ·αn

where B is a nonterminal:

Replace the value of FOLLOW(B) with

FOLLOW(B) ∪ FIRST(αk+2 · · ·αn)− {ǫ}
if ǫ ∈ FIRST(αk+2 · · ·αn):

Set FOLLOW(B) = FOLLOW(B) ∪ FOLLOW (A)
if the values of FOLLOW were not changed by the iteration:

break

3.8.5 Dealing with non-LL(1) grammars.

You will have noticed, no doubt, that Grammar 3.7 is a bit odd, compared to
a normal expression grammar. For one thing, it looks rather contorted, and for
another, it groups expressions to the right rather than the left (it treats ‘a+b+c’ as
‘a+(b+c)’). However, if I try to write a more natural grammar—for example, more
along the lines of Grammar 3.5—I run into trouble:

Grammar 3.8. A simple non-LL(1) grammar

A. p: e ’⊣’
B. e: e ’+’ t { $$ = makeTree (’+’, $1, $3); }
C. e: t { $$ = $1; }
D. t: ’(’ e ’)’ { $$ = $2; }
E. t: i { $$ = $1; }
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The problem is that the test to determine whether to apply the first or second rule
for ‘e’ breaks down: the same symbols can start an ‘e’ as can start a ‘t’. Another
problem is that the grammar is left recursive: from ‘e’, one can produce a sentential
form that begins with ‘e’; in a program this causes an infinite recursion. Both of
these cause the grammar to be non-LL(1).

Some textbooks go into a great deal of hair to get around problems like this.
Frankly, I prefer to take a more practical stance. The pattern above is quite com-
mon, and is easily dealt with by means of a loop:

Tree e () {

Tree t1, t3;

t1 = t ();

while (nextToken () == ’+’) {

scan (’+’); t3 = t (); t1 = makeTree (’+’, t1, t3);

}

return t1;

}

3.9 General context-free parsing

It turns out that there are completely general algorithms that work for all context-
free grammars, ambiguous or not, and find all possible parses (and hence, parse trees
and corresponding derivations) of any input string. To motivate the algorithm, let’s
consider again the approach used for recursive descent, but with a few modifications.
Consider the problem of parsing an input, c1c2 · · · cn, using a particular grammar.
In what follows, I’ll use a few notational conventions:

• Capital latin letters denote nonterminal grammar symbols.

• Lower case latin letters denote terminal or nonterminal grammar symbols.

• Lower case greek letters denote strings (possibly empty) of terminal and non-
terminal grammar symbols.

The start symbol in our grammar will have a single rule of the form p : γ ⊣, and
will appear only on the left side of this one rule. The ‘⊣’ symbol will appear only
at the end of any input string.

3.9.1 An abstract algorithm

Let’s first reformulate simple recursive-descent recognition as a single procedure:
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def parse (A, S):

"""Assuming A is a nonterminal and S = c1c2 . . . cn is a string,

return integer j such that A can derive the string c1 . . . cj."""
Choose production ’A : α1α2 · · ·αm’ for A (nondeterministically)

j = 0

for x in α1, α2, · · · , αm:

if x is a terminal:

if x == cj+1:

j += 1

else:

GIVE UP

else:

j += parse (x, cj+1 · · · cn)
return j

Given its comment, string S will be accepted by our grammar iff the call parse(p,S)
successfully returns (where again, p is our grammar’s start symbol). The idea here
is the that the special “Choose” step indicates a point where, like an NFA, our
program can pursue multiple options. If there is some sequence of choices the
program can take when it encounters this step that allows a call parse(X,S) to
return without giving up, then there is a derivation of string S from nonterminal
X. Some paths through the program may give up, and others may loop endlessly
(such as in the case of left recursion). But as long as one gets all the way through
execution, we’ll say that the parse succeeds.

We can add semantic actions to this framework without too much trouble:

def parse2 (A, S):

"""Assuming A is a nonterminal and S = c1c2 . . . cn is a string,

return a pair (j, v), where j is an integer such that A

can derive the string c1 . . . cj, and v is a

semantic value computed for A from this string."""

Choose production ’A: α1α2 · · ·αm’ for A (nondeterministically),

where the associated semantic value is f([v1, . . . , vm]) if

vi is the semantic value attached to αi

j = 0

vals = []

for x in α1, α2, · · · , αm:

if x is a terminal:

if x == cj+1:

j += 1

else:

GIVE UP

else:

jx, vx = parse2 (x, cj+1 · · · cn)
j += jx

vals.add (vx)

return j, f(vals)

For now, however, we will ignore semantic actions and values and concentrate on
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finding derivations or parse trees.

Either of these abstract procedures would solve the general parsing problem,
if we could just implement them. An obvious approach would be to use a mul-
tiprocessor, and spawn a new process for each production at the “Choose” step.
Unfortunately, this would generally require an unbounded number of processors
(or alternatively, an unbounded amount of work for a single processor). We need
something considerably more efficient. A form of memoization provides an answer.

First, let’s rewrite parse to be purely recursive (no explicit loops), so that we can
use its arguments to index our collection of memoized values. It will be convenient
to fix a particular input string, c1 · · · cn, and write the function like this:

def parse (X : α • β, s, k):

"""Assuming 0 ≤ s ≤ k ≤ n X : αβ is a production in the grammar,

and α
∗

=⇒ cs · · · ck, return j such that β
∗

=⇒ ck+1 · · · cj, and

thus X ⇒ αβ
∗

=⇒ cs · · · cj."""
if β is empty:

return k;

Assume β has the form yδ
if y is a terminal:

if y == ck+1:

return parse (X : αy • δ, s, k+1)

else:

return GIVE UP

else:

Choose a production y : κ in the grammar

j = parse (y : • κ, k, k)

return parse(X : αy • δ, s, j)

Now we can tell if our input string c1 · · · cn is in the language by seeing if
parse ({p : • γ ⊣}, 0, 0) returns a value.

3.9.2 Earley’s algorithm

To implement this version of our abstract parsing algorithm, we will keep track of all
possible distinct calls (that is, calls with distinct arguments) that might arise during
the application of parse to a given input string. The data structure used to do this
is traditionally known as a chart, and the resulting parsers are called chart parsers.
The particular chart parser we’ll look at here (from Carnegie-Mellon University, my
graduate alma mater, as it turns out) is known as Earley’s Algorithm4.

As an example, consider the following grammar:

Grammar 3.9. Another expression grammar

p : e ’⊣’
e : t

| e ’-’ t

t : f

4J. “An efficient context-free parsing algorithm,” Comm. ACM 13:2 (1970), pp. 94–102.
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0
I

1
-

2
I

3
⊣

4

a. p: •e ’⊣’, 0 f. f: I•, 0 j. e: e ’-’ •t, 0 m. f: I•, 2 q. p: e ’⊣’•,0
b. e: •e ’-’ t, 0 g. t: f•, 0 k. t: •f, 2 n. t: f•, 2

c. e: •t, 0 h. e: t•, 0 l. f: •I, 2 o. e: e ’-’ t•, 0

d. t: •f, 0 i. e: e •’-’ t, 0 p. p: e •’⊣’, 0

e. f: •I, 0

Table 3.1: Chart from parsing “I-I⊣” showing just successful entries.

0
I

1
-

2
I

3
⊣

4

a. p: •e ’⊣’, 0 f. f: I•, 0 j. e: e ’-’ •t, 0 m. f: I•, 2 q. p: e ’⊣’•,0
b. e: •e ’-’ t, 0 g. t: f•, 0 k. t: •f, 2 n. t: f•, 2

c. e: •t, 0 h. e: t•, 0 l. f: •I, 2 o. e: e ’-’ t•, 0

d. t: •f, 0 i. e: e •’-’ t, 0 t: •t ’/’ f, 2 p. p: e •’⊣’, 0

e. f: •I, 0 t: t •’/’ f, 0 f: •’(’ e ’)’, 2 t: t •’/’ f, 2

t: •t ’/’ f, 0 p: e •’⊣’, 0 e: e •’-’ t, 0

f: •’(’ e ’)’, 0

Table 3.2: Chart from parsing “I-I⊣” showing all entries, including those corre-
spond to calls that eventually “give up” or loop forever.

| t ’/’ f

f : I

| ’(’ e ’)’

where p is the start symbol, and ‘I’ (for identifier) and quoted symbols are terminals.
We’ll parse the string “I-I⊣” by calling parse(p : •e ⊣, 0, 0).

Table 3.1 charts only the calls that succeed. We record a call parse(X : α •
β, s, k) with an entry of the form “X : α • β, s” in column k of the chart. Each
such entry is known as an item, and a column of items as an item set. In Table 3.1,
we’ve used letters to the left of the items to indicate the order in which the calls they
record occur in the abstract program. The headings on the columns are the values
of k, and, for reference, I’ve placed the terminal symbols ck+1 above the divisions
between columns k and k + 1.

Since computers don’t have the prescience needed to predict exactly which calls
will succeed, Earley’s algorithm computes all calls that could be made by some
sequence of choices in the abstract algorithm, filling in the columns of the chart and
processing input symbols one at a time from left to right. Table 3.2 shows the total
set of computed items. Those items that don’t have enumerating letters in front
represent calls that eventually fail. The algorithm avoids following infinite chains
of calls because the chart represents sets of items: adding the same item twice does
not change the chart.

You can think of the actual computation as another fixed-point iteration. We
start with a chart that contains only the single item p: •e ’⊣’ in column 0. Then
we repeat the following (taken pretty much directly from the abstract algorithm)
until the chart does not change for any of the possible choices:

Choose an item X : α • yδ, s from some column k
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if y is a terminal and y == ck+1:

add item X : αy • δ, s to item set k + 1 (if not already present)

else:

Choose a production y : κ in the grammar

add item y : •κ, k to item set k (if not already present)

if there is an item y : κ•, k in some item set j:
add item X : αy•δ, s to item set j (if not already present)

Earley’s algorithm does this efficiently, working on one column until the chart ceases
to change and then moving on to the next.

If the total number of symbols in all productions in the the grammar (including
both those to the left and right of the colon) is KG (a constant), then number of
items in an entire chart is evidently ≤ KG(n + 1)(n + 2)/2 ∈ O(n2). With careful
implementation, each of those items can get shifted into up to n item sets (“shifted
into” means “added to after shifting the dot to the right by one”), for a total time
of O(n3). For unambiguous grammars, this time bound tightens to O(n2), and for
the deterministic grammars of most programming languages (which we’ll discuss in
later sections), the bound is O(n), making this a rather efficient algorithm (if you
are willing to ignore constant factors anyway).

Table 3.3 shows a complete run of the machine over another string, “I-(I)/I⊣.”
This table includes a new piece of notation. If you consider how the algorithm works,
you’ll see that whenever a dot appears in an item, I, immediately after a nonterminal
symbol, A, there has to be another item of the form A : ξ•, j in that same item set.
Such an item is called a handle; it tells us that there is a derivation of A from the
input symbols cj+1 · · · ck, where k is the number of item set containing the handle.
The semantic value for A produced by this derivation is a value that can eventually
be attached to the A that precedes the dot in item I. In Table 3.3, we’ve numbered
all the items in a given item set and subscripted each occurrence of A to the left of
a dot with the handle items in that set that caused it to appear. This information is
actually redundant, since we could reconstruct the information, and is unnecessary
for merely recognizing valid strings, but it will be useful for extracting a derivation
or parse tree out of the item sets.

3.9.3 Extracting the derivation(s)

So far, we’ve just used Earley’s algorithm to recognize valid strings in a language.
But as we’ve argued before, it’s really the derivation that is of interest to us, since
it allows us to tell what actions to trigger on what values. It’s not hard to extract a
derivation once we’ve got a complete sequence of item sets. In Figure 3.3, we added
some subscripts to indicate why items got shifted. We can now use these.

Start at the last item set, which for a valid input will always contain exactly one
item (or no items for an invalid input). This item is 1. p : e ’⊣’ •, 0, which—
since it appears in item set #8—tells us that the production matches all the input
from position 0 (before the first charcter) up through position 8 (just after the last
character). The symbol just before the dot is a terminal symbol (‘⊣’), so we know
to look one item set back to find out where the e comes from.

We find there the item that got shifted on ‘⊣’, namely 5. p : e4 •’⊣’ , 0,
which tells us to look at item 4 in the same set to find the derivation of ‘e’. That
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0
I

1
-

2
(

1. p : •e ’⊣’, 0 1. f : I •, 0 1. e : e ’-’ •t, 0

2. e : •t, 0 2. t : f1 •, 0 2. t : •f,2
3. e : •e ’-’ t, 0 3. t : t2 •’/’ f, 0 3. t : •t ’/’ f, 2

4. t : •f, 0 4. e : t2 •, 0 4. f : •I, 2

5. t : •t ’/’ f, 0 5. p : e4 •’⊣’, 0 5. f : •’(’ e ’)’, 2

6. f : •I, 0 6. e : e4 •’-’ t, 0

7. f : •’(’ e ’)’, 0

(
3

I
4

)
5

/

1. f : ’(’ •e ’)’ , 2 1. f : I •, 3 1. f : ’(’ e ’)’ •, 2

2. e : •e ’-’ t , 3 2. t : f1 •, 3 2. t : f1 •, 2

3. e : •t , 3 3. e : t2 •, 3 3. e : e ’-’ t2 •, 0

4. t : •f , 3 4. t : t2 •’/’ f , 3 4. t : t2 •’/’ f , 2

5. t : •t ’/’ f , 3 5. e : e3 •’-’ t , 3 5. p : e3 •’⊣’ , 0

6. f : •’(’ e ’)’ , 3 6. f : ’(’ e3 •’)’ , 2 6. e : e3 •’-’ t , 0

7. f : •I , 3

/
6

I
7

⊣
8

1. t : t ’/’ •f , 2 1. f : I •, 6 1. p : e ’⊣’ •, 0

2. f : •’(’ e ’)’ , 6 2. t : t ’/’ f1 •, 2

3. f : •I , 6 3. t : t2 •’/’ f , 2

4. e : e ’-’ t2 •, 0

5. p : e4 •’⊣’ , 0

6. e : e4 •’-’ t , 0

Table 3.3: Complete parse of ‘I-(I)/I⊣’ using Earley’s algorithm and Grammar 3.9.
The subscripts on just-shifted nonterminal symbols in an item indicate which han-
dles (denoted by items with dots on the right) caused that item to get shifted. We
use them later to reconstruct the derivation or parse tree.
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item is 4. e : e ’-’ t2 •, 0, where says that this topmost ‘e’ that we are looking
at came from the production e : e ’-’ t, and that these symbols match input
positions after 0 up to and including 7 (the number of the item set we are now
considering). We now trace this item backwards through the parse, starting with
the ‘t’ just before the dot. Its subscript tells us that we got this from item #2 in
item set 7, which is 2. t : t ’/’ f1 •, 2. That is, this t matches all the text
from after character position 2 up to and including character position 7.

Let’s take a look at where things stand at the moment. We’ve built a partial
tree that looks like this:

p

e

e

-

t

t f

⊣I ( I ) / I

At each point, the item we are considering tells us where the text it covers starts
(the position after the comma) and where it ends (the number of the item set that
contains the item). We can deduce everything we need to parse the string, so as to
arrive at the parse tree in Figure 3.5

3.9.4 Dealing with epsilon rules

Grammar 3.9 did not include empty (epsilon or ǫ) rules, but they don’t really change
things if you follow the procedure literally enough. Consider a simpler grammar:

Grammar 3.10. Still another expression grammar
p : e ⊣
e : s I t

t :

t : ’/’ e

s :

s : ’-’

I have chosen to indicate epsilon productions without writing ǫ just to clarify that
there is nothing on the right sides of those productions. For the string ‘I/-I⊣,’ the
procedure from §3.9.2 gives us the following contents for column 0:
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p

e

e

t

f

I -

t

t

f

(

e

t

f

I ) /

f

I ⊣

Figure 3.5: Completed parse tree for I-(I)/I⊣, as extracted from the item sets in
Figure 3.3.
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1. p : • e ⊣, 0

2. e : • s I t, 0

3. s : •, 0

4. s : • ’-’, 0

5. e : s3 • I t, 0

Item #5 results from shifting item #2. The only difference from prior examples is
that we just happen to take the item that we shift from the same itemset we shift
it into.

Continuing with column 1:

1. e : s I • t, 0

2. t : •, 1

3. t : • ’/’ e, 1

4. e : s I t2 •, 0

5. p : e4 • ⊣, 0

and column 2:

1. t : ’/’ • e, 1

2. e : • s I t, 2

3. s : •, 2

4. s : • ’-’, 2

5. e : s4 • I t, 2

This time, items 3 and 5 will turn out to be dead ends, since the next input character
is ‘-’.

Here are the remaining item sets:
-

3
I

4
⊣

5

1. s : ’-’ •, 2 1. e : s I •t, 2 1. p : e ⊣•
2. e : s1 •I t, 2 2. t : •, 4

3. t : ’/’ e, 4

4. e : s I t2 •, 2

5. t : ’/’ e4 •, 1

6. e : s I t5 •, 0

7. p : e6 •⊣, 0

3.9.5 The effects of ambiguity

Earley’s algorithm can deal with ambiguous grammars without any essential changes.
Let’s look at a particularly simple example:

Grammar 3.11. An ambiguous expression grammar
p : e ⊣
e : I

e : e ’-’ e
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Running the algorithm on the input ‘I-I-I⊣’ gives us the results in Figure 3.6.
You can see the difference from the previous run in column 5. There, item #3
gets shifted into the item set from two different places, as indicated by the two
subscripts on the final ‘e’. That nonterminal can either match the text matched by
item #1—and the ‘,4’ at the end of that item tells us that it matches characters
after character 4 through character 5, or in other words, “I”—or item #2, which
would be “I-I”. This gives us two possible trees, as shown at the bottom of the
figure.

3.10 Deterministic Bottom-up Parsing

Earley’s algorithm is not generally used for programming languages, because, being
explicitly designed, they generally avoid ambiguity and other features that would
require fully general context-free parsing. These grammars are deterministic in the
sense that during simple left-to-right processing, it is always possible to tell from the
terminal symbols already processed, with possibly a little “peeking” at some fixed
number of terminals ahead (usually one), the portions of the parse tree that derive
the input seen so far. That is, it is unnecessary to keep other possible derivations
around speculatively in case later parts of the input should prove them necessary.
Deterministic languages are unambiguous and require only space proportional to
the longest sentential form encountered in the derivation.

3.10.1 Shift-reduce parsing

Let’s again consider Grammar 3.8 from above, and look at a reverse derivation of
the string ‘i+(i+i)⊣’:

1. i + ( i + i ) ⊣
2. t + ( i + i ) ⊣
3. e + ( i + i ) ⊣
4. e + ( t + i ) ⊣
5. e + ( e + i ) ⊣
6. e + ( e + t ) ⊣
7. e + ( e ) ⊣
8. e + t ⊣
9. e ⊣
10. p

Read from the bottom up, this is a straightforward rightmost derivation, but with
a mysterious gap in the middle of each sentential form. The gap marks the position
of the handle in each sentential form—the portion of the sentential form up to and
including the symbols produced (reading upwards) by applying the next production
or (reading downwards) the symbols about to be reduced by applying the next
reverse production. Reading this downwards, you see that the gap proceeds through
the input (i.e., the sentence to be parsed) from left to right. We call the symbols
left of the gap “the stack” (right symbol on top) and the symbol just to the right
of the gap “the lookahead symbol”.
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0
I

1
-

2
I

1. p : •e ’⊣’, 0 1. e : I •, 0 1. e : e ’-’ •e, 0

2. e : •I, 0 2. e : e1 •’-’ e, 0 2. e : •I, 2

3. e : •e ’-’ e, 0 3. p : e1 •’⊣’, 0 3. e : •e ’-’ e, 2

I
3

-
4

I
5

⊣
6

1. e : I •, 2 1. e : e ’-’ •e, 2 1. e : I •, 4 1. p : e ’⊣’ •, 0

2. e : e ’-’ e1 •, 0 2. e : e ’-’ •e, 0 2. e : e ’-’ e1 •, 2

3. e : e1 •’-’ e, 2 3. e : •I, 4 3. e : e ’-’ e1,2 •, 0

4. e : e2 •’-’ e, 0 4. e : •e ’-’ e, 4 4. e : e2 •’-’ e, 2

5. p : e2 •’⊣’, 0 5. e : e3 •’-’ e, 0

6. e : e1 •’-’ e, 4

7. p : e3 •’⊣’, 0

p

e

e

I -

e

e

I -

e

I

p

e

e

e

I -

e

I -

e

I

Figure 3.6: Parse of ’I-I-I⊣’ by Grammar 3.11, and resulting parse trees.
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To add semantic actions, we just apply the rules attached to a given production
each time we use it to reduce, attaching the resulting semantic value to the resulting
nonterminal instance. For example, suppose that the semantic values attached to
the three ’i’s in the preceding example are leaf nodes 1, 2, and 3, respectively.
Then, using x : E to mean “semantic value E is attached to symbol x,” we have
the following parse

1. i:1 + ( i:2 + i:3 ) ⊣
2. t:1 + ( i:2 + i:3 ) ⊣
3. e:1 + ( i:2 + i:3 ) ⊣
4. e:1 + ( t:2 + i:3 ) ⊣
5. e:1 + ( e:2 + i:3 ) ⊣
6. e:1 + ( e:2 + t:3 ) ⊣
7. e:1 + ( e:(+ 2 3) ) ⊣
8. e:1 + t:(+ 2 3) ⊣
9. e:(+ 1 (+ 2 3)) ⊣
10. p

Initially, only the terminal symbols have semantic values (as supplied by the lexer).
Each reduction computes a new semantic value for the nonterminal symbol pro-
duced, as directed by the grammar.

With or without semantic actions, the process illustrated above is called “shift-
reduce parsing.” Each step consists either of shifting the lookahead symbol from
the remaining input (right of the gap) to the top of the stack (left of the gap), or of
reducing some symbols (0 or more) on top of the stack to a nonterminal according
to one of the grammar productions (and performing any semantic actions). Each
line in the examples above represents one reduction, plus some number of shifts.
For example, line 5 represents the reduction of ‘t’ to ‘e’, followed by the shift of ‘+’
and ‘i’.

In all these grammars, it is convenient to have the end-of-file symbol (‘⊣’) and
the start symbol (in the examples, ‘p’) occur in exactly one production. This first
production then has no important semantic action attached to it. This means that
as soon as we shift the end-of-file symbol, we have effectively accepted the string
and can stop.

We could completely mechanize the process of shift-reduce parsing if we could
determine when we have a handle on the stack, and which handle we have. The
algorithm then becomes

while ⊣ not yet shifted:

if handle is on top of the stack:

reduce the handle

else:

shift the lookahead symbol

Actually, this procedure applies only when we have an unambiguous grammar.
With an ambiguous grammar, we have to accommodate cases where there may be
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multiple handles to choose from or where a certain string can also be parsed if we
don’t reduce a certain handle, but wait for one that shows up later after some more
shifting or other reductions. Even for unambiguous grammars, the procedure works
best if we can tell when we have a handle based only on the contents of the stack
and the lookahead symbol (without looking further ahead in the input). Let’s work
up to this gradually.

3.10.2 Recognizing possible handles: the LR(0) machine

It turns out, interestingly enough, that although context-free languages cannot be
recognized in general by finite-state machines, their rightmost handles can be rec-
ognized. That is, we can build a DFA that allows us to perform the “handle is on
top of the stack” test by pushing the stack through the DFA from bottom to top
(left to right in the diagrams above). This DFA will also tell us which production
to use to reduce the handle.

To do this, I will first show how to construct a “handle grammar”—a grammar
that describes all possible handles. The terminal symbols of this grammar will be
all the symbols (terminal and nonterminal) of the grammar we are trying to parse.
I will then show how to convert the handle grammar into an NFA, after which the
usual NFA-to-DFA construction will finish the job.

The nonterminals of the handle grammar for Grammar 3.8 are Hp, He, and Ht.
Hp means “a handle that occurs during a rightmost derivation of a string from ‘p’ ”.
Likewise, He means “a handle that occurs during a rightmost derivation of a string
from ‘e’, and so forth. Let’s start with Hp. There are two cases: either the stack
consists of the handle “e ⊣” and we are ready for the final reduction, or we are
still in the process of forming the ‘e’ and haven’t gotten around to shifting the ‘⊣’
yet—in other words, we have some handle that occurs during a derivation of some
string from ‘e’. Such a handle is supposed to be described by He. This gives us the
rules:

Hp: e ⊣
Hp: He

(Again, the symbols ‘e’ and ‘⊣’ are both terminal symbols here; Hp is the nontermi-
nal.)

Now let’s consider He. From the grammar, we see that one possible handle for
‘e’ is ‘t’. It is also possible that we are part way through the process of reducing to
this ‘t’, so that we have the two rules

He: t

He: Ht

Likewise, we also see that another possible handle is ‘e + t’. It is therefore possible to
have ‘e +’ on the stack, followed by a handle for an as-yet-incomplete ‘t’, or finally,
it is possible that the ‘e’ before the ‘+’ is not yet complete. These considerations
lead to the following rules for He:



3.10. DETERMINISTIC BOTTOM-UP PARSING 75

He: e ’+’ t

He: e ’+’ Ht

He: He

(The last rule is useless, but harmless).
Continuing, the full handle grammar looks like this:

Hp: e ⊣ | He

He: t | Ht

He: e + t | e + Ht | He

Ht: i

Ht: ( e ) | ( He

This grammar has a special property: the only place that a nonterminal symbol
appears on a right-hand side is at the end (the nonterminals in the handle grammar
are Hp, He, and Ht). The grammar, in other words, is a regular grammar, as
described in §3.5. This is significant because grammars with this property can be
converted into NFAs very easily.

Consider, for example, the grammar

A: x B

B: y A

B: z

The NFA in Figure 3.7 recognizes this grammar. We simply translate each non-
terminal into a state, and transfer to that state whenever a right-hand side calls
for recognizing the corresponding nonterminal. The translation in the figure uses
some epsilon transitions where they really could be avoided, because this will be
convenient in the production of a machine for the handle grammar.

When we use this technique to convert the handle grammar into a NFA, we get
the machine shown in Figure 3.8. I have put labels in the states that hint at why
they are present. For example, the state labeled “e: e •+ t” is supposed to mean
“the state of being part way through a handle for the production “e: e + t” just
before the ‘+’.” These labels (productions with a dot in them) are known as LR(0)
items. Some of the states have the same labels; however, if you examine them, you
will see that any string that reaches one of them also reaches the other, so that the
identical labels are appropriate. There are no final states mentioned, because all
the information we’ll need resides in the labels on the states.

The final step is to convert the NFA of Figure 3.8 into a DFA (so that we can
easily turn it into a program). We use the set-of-states construction that you learned
previously. The labels on the resulting states are sets of LR(0) items; I leave out the
labels Hp, He, and Ht, since they turn out to be redundant. You can verify that we
get the machine shown in Figure 3.9. It is no accident that the labels in the nodes
of this DFA look like item sets from Earley’s algorithm (minus the trailing input
positions). They record the same information, but the trailing input positions are
unnecessary for deterministic grammars.
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Figure 3.7: Example of converting a regular grammar into a NFA.
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3.10.3 Using the machine

We may represent the LR(0) machine from Figure 3.9 as a state-transition table:

Action Goto
State i + ( ) ⊣ e t

0. s2 s4 1 3
1. s6 s5
2. rE rE rE rE rE
3. rC rC rC rC rC
4. s2 s4 7 3
5. ACCEPT
6. s2 s4 8
7. s6 s9
8. rB rB rB rB rB
9. rD rD rD rD rD

The numeric entries in this table (preceded by ‘s’ (shift) in the action table and ap-
pearing plain in the goto table) come from the state transitions (arcs) in Figure 3.9.
The ‘r’ (reduce) entries come from LR(0) items with a dot at the right (indicating
a state of “being to the right of a potential handle.”) The letters after ‘r’ refer to
productions in Grammar 3.8.

To see how to use this table, consider again the string ‘i+(i+i)⊣’. Initially, we
have the situation

1. 0 | i + ( i + i ) ⊣

Here, the ‘|’ separates the stack on the left from the unprocessed input on the right;
the lookahead symbol is right after ‘|’. The subscript ‘0’ indicates that the DFA
state that corresponds to the left end of the stack is state 0. We use the table,
starting in state 0. There is nothing on the stack, and row 0 of the table tells us
that there is no reduction possible, but that we could process an ‘i’ token if it were
on the stack. Therefore, we shift the ‘i’ token from the input, giving

2. 0i2 | + ( i + i ) ⊣

(The subscript 2 shows the DFA’s state after scanning the ‘i’ on the stack). Again,
we start in state 0 and scan the stack, using the transitions in the table. This leaves
us in state 2. Row 2 in the table tells us that no shifts are possible, but we may
reduce (‘r’) using production E (t: i). We therefore pop the ‘i’ off the stack, and
push a ‘t’ back on, giving

2. 0t3 | + ( i + i ) ⊣

Running the machine over this new stack lands us in state 3, which says that no
shifts are possible, but we can use reduction C (e → t), which gives

3. 0e1 | + ( i + i ) ⊣
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Now the machine ends up in state 1, whose row tells us that either a ‘+’ or an ‘⊣’
could be next on the stack, so that we can shift either of these, leading to

3a. 0e1 +6 | ( i + i ) ⊣

The state 6 entry tells us that we can shift ‘(’, and then the state 4 entry tells us
we can shift ‘i’, giving

3b. 0e1 +6(4 i2 | + i ) ⊣

whereupon we see, again from the state 2 entry, that we should reduce using pro-
duction E:

4. 0e1 +6 (4 t3 | + i ) ⊣

and the state 3 entry tells us to reduce using production C:

5. 0e1 +6 (4 e7 | + i ) ⊣

and so forth.

In general, then, we repeatedly perform the following steps for each shift and
reduction the parser takes:

FINDSTATE:

state = 0;

for each symbol, s, on the stack,

state = table[state][s];

FINDACTION:

if table[state][lookahead] is sn
push the lookahead symbol on the stack;

advance the input;

else if table[state][lookahead] is rk
Let A : x1 · · · xm be production k;
pop m symbols from the stack;

push symbol A on the stack;

else if table[state][lookahead] is ACCEPT

end the parse;

The FINDACTION part of this fragment takes a constant amount of time for each
action. However, the time required for FINDSTATE increases with the size of the
stack. We can speed up the parsing process with a bit of “memoization”. Rather
than save the stack symbols, we instead save the states that scanning those symbols
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results in (the subscripts in my examples above). Each parsing step then looks like
this:

FINDACTION:

if table[top(stack)][lookahead] is sn
push n on the stack;

advance the input;

else if table[top(stack)][lookahead] is rk
Let A : x1 · · · xm be production k;
pop m states from the stack;

// Reminder: top(stack) is now changed!

push table[top(stack)][A] on the stack;

else if table[state][lookahead] is ACCEPT

end the parse;

and our sample parse looks like this:

0. 0 | i + ( i + i ) ⊣
1. 0 2 | + ( i + i ) ⊣
2. 0 3 | + ( i + i ) ⊣
3. 0 1 | + ( i + i ) ⊣

3a. 0 1 6 | ( i + i ) ⊣
3b. 0 1 6 4 | i + i ) ⊣
3c. 0 1 6 4 2 | + i ) ⊣
4. 0 1 6 4 3 | + i ) ⊣
5. 0 1 6 4 7 | + i ) ⊣

5a. 0 1 6 4 7 6 | i ) ⊣
5b. 0 1 6 4 7 6 2 | ) ⊣
6. 0 1 6 4 7 6 8 | ) ⊣
7. 0 1 6 4 7 | ) ⊣

7a. 0 1 6 4 7 9 | ⊣
8. 0 1 6 8 | ⊣
9. 0 1 | ⊣

9a. 0 1 5 |

10. ACCEPT

It’s important to see that all we have done with this change is to speed up the parse.

3.10.4 Resolving conflicts

Grammar 3.8 is called an LR(0) grammar, meaning that its LR(0) machine has the
property that each state contains either no reduction items (items with a dot at
the far right) or exactly one reduction item and nothing else. In other words, an
LR(0) grammar is one that can be parsed from Left to right to produce a Rightmost
derivation using a shift-reduce parser that does not consult the lookahead character
(uses 0 symbols of lookahead). Few grammars are so simple. Consider, for example,



3.10. DETERMINISTIC BOTTOM-UP PARSING 81

e −> t .

e −> t . @ e

p −> e −| .

e −> t @ e .
e −> t @ . e

e −> . t

e −> . t @ e

t −> . v

t −> . f ( )

v −> . i

f −> . i

t −> v .

f −> i .

v −> i .

p −> . e −|

e −> . t 

e −> . t @ e

t −> . v

t −> . f ( )

v −> . i

f −> . i

p −> e . −|

t −> f . ( ) t −> f ( . ) t −> f ( ) .

e

t

v

i

f
f

i

v

t

@

−|

e

( )

0

1

4

2

3

5

6

7

8

9

10

Figure 3.10: LR(0) machine for Grammar 3.12.

Grammar 3.12. A non-LR(0) grammar

A. p: e ’⊣’
B. e: t ’@’ e

C. e: t

D. t: f ’(’ ’)’

E. t: v

F. f: i

G. v: i

which gives us the DFA in Figure 3.10.

As you can see from the figure, there are problems in states #2 and #4. State #2
has an LR(0) shift/reduce conflict: it is possible both to reduce by reduction C or
to shift the symbol ‘@’. In this particular case, it turns out that the correct thing
to do is to shift when the lookahead symbol is ‘@’ and to reduce otherwise; that is,
reducing on ‘@’ will always cause the parse to fail later on. State #4 has an LR(0)
reduce/reduce conflict: it is possible to reduce either by reduction F or G. In this
case, the correct thing to do is to reduce using F if the next input symbol is ’(’ and
by G otherwise. We end up with the following parsing table:
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Action Goto
State i @ ( ) ⊣ e t f v

0. s4 1 2 5 3
1. s6
2. rC s7 rC rC rC
3. rE rE rE rE rE
4. rG rG rF rG rG
5. s8
6. ACCEPT
7. s4 9 2 5 3
8. s10
9. rB rB rB rB rB
10. rD rD rD rD rD

Because the choice between reduction and shift, or between two reductions, depends
on the lookahead symbol (in contrast to Grammar 3.8), we say Grammar 3.12 is not
LR(0). However, since one symbol of lookahead suffices, we say that it is LR(1)—
parseable from Left to right producing a Rightmost derivation using a shift-reduce
parser with 1 symbol of lookahead. In fact, Grammar 3.12 is what we call LALR(1),
the subclass of LR(1) for which the parsing table has the same states and columns
as for the LR(0) machine, and we merely have to choose the entries properly to get
the desired result. (LALR means “Lookahead LR.” Since LR parsers do look ahead
anyway, it’s a terrible name, but we’re stuck with it.) Yacc and Bison produce
LALR(1) parsers. The class LR(1) is bigger, but few practical grammars are LR(1)
without being LALR(1), and LALR(1) parsing tables are considerably smaller.

Unfortunately, it is not clear from just looking at the machine that we have
filled in the problematic entries correctly. In particular, while the choice between
reductions F and G in state #4 is clear in this case, the general rule is not at all
obvious. As for the LR(0) shift-reduce conflict in state #2, it is obvious that if
‘@’ is the lookahead symbol, then shifting has to be acceptable, but perhaps this is
because the grammar is ambiguous and either the shift or the reduction could work,
or perhaps if we looked two symbols ahead instead of just one, we would sometimes
choose the reduction rather than the shift.

One systematic approach is to use the FOLLOW sets that we used in LL(1)
parsing. Faced with an LR(0) reduce/reduce conflict such as ‘f→ i’ vs. ‘v→ i’
in state #4, we choose to reduce to f if the lookahead symbol is in FOLLOW(f),
choose to reduce v if the lookahead symbol is in FOLLOW(v), and choose either
one otherwise (or leave the entry blank). Likewise, we can assure that the LR(0)
shift-reduce conflict in state #2 is properly resolved in favor of shifting ‘@’ as long
as ‘@’ does not appear in FOLLOW(e), as in fact it doesn’t. When this simple
method resolves all conflicts and tells us how to fill in the LR(0) conflicts in the
table, we say that the grammar is SLR(1) (the ‘S’ is for “Simple”). Grammar 3.12
happens to be SLR(1).

However, there are cases where the FOLLOW sets fail to resolve the conflict
because they are not sensitive to the context in which the reduction takes place.
Therefore, typical shift-reduce parser generators go a step further and use the full
LALR(1) lookahead computation. We attach a set of lookahead symbols to the end
of each LR(0) item, giving what is called an LR(1) item. Think of an LR(1) item
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such as

t: .v, ⊣, @

as meaning “we could be at the left end of a handle for t, and after that handle,
we expect to see either an ‘⊣’ or a ‘@’.” We add these lookaheads to the LR(0)
machine in Figure 3.10 by applying the following two operations repeatedly until
nothing changes, starting with empty lookahead sets:

• If we see an item of the form ‘A → α.Bβ,L1’ in a state (where L is a set
of lookaheads, B is a nonterminal, and α and β are sequences of 0 or more
terminal and nonterminal symbols), then for every other item in that same
state of the form ‘B : .γ, L2,’ add the set of terminal symbols FIRST(βL1)
to the set L2. (Here, we define FIRST(L1) to be simply L1. Therefore,
FIRST(βL1) is simply FIRST(β) if β does not produce the empty string, and
otherwise it is FIRST(β) ∪ L1 − ǫ).

• If we see an item of the form ‘A → α.Xβ,L1’ in a state, then find the
transition from that state on symbol X and find item ‘A : αX.β, L2’ in the
target of that transition. Add the symbols in L1 to L2.

Applying these operations to the machine in Figure 3.10 gives the LALR(1) machine
in Figure 3.11.

3.10.5 Using Ambiguous Grammars

The traditional method of specifying the precedence and association of operators—
illustrated in Grammar 3.5, for example—involves introducing numerous nontermi-
nals, one for each level of precedence. It would be much nicer to be able to write
something like

Grammar 3.13. Ambiguous expression grammar

expr : IDENTIFIER

| NUMERAL

| ’(’ expr ’)’

| expr ’-’ expr

| expr ’/’ expr

| expr "**" expr

and somehow specify separately that ‘**’ has highest precedence and associates to
the right, ‘/’ has next highest and associates left, and ‘-’ has lowest and associates
left. We can get exactly this effect by attempting to build the LALR(1) machine for
this grammar, and then resolving the conflicts that result “by hand.” The conflicts
that arise show up as unresolved shift-reduce conflicts. We get states in the machine
labeled with item sets containing such things as

expr: expr ’-’ expr{•}, Lookaheads: ‘-’, ‘{⊣}’, ’/’, ’**’ ‘)’

expr: expr {•}’-’ expr,
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Figure 3.11: LALR(1) machine for Grammar 3.12.
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expr: expr {•}’/’ expr,

...

If the next input symbol is ‘-’, do we reduce by the first item, or do we shift by
the second? The lookahead set fails to resolve this conflict. If we decide to take the
reduction, the effect is to associate ‘-’ to the left (the first of two ‘-’ operators binds
more tightly). If we shift the ‘-’, the effect is to associate to the right. Likewise, by
choosing to shift on seeing a ‘/’, we effectively cause ‘/’ to bind more tightly (have
higher precedence) than ‘-’.

The Bison parser generator exploits this behavior. You can augment the am-
biguous grammar with precedence declarations:

%left ’-’

%left ’/’

%right "**"

Each line represents a set of operators of increasing precedence, and the “%left”
or “%right” declarations indicate how operators on the same line group. The
implementation is quite simple. Whenever Bison sees a rule containing one of these
terminal symbols, such as

expr : expr ’-’ expr

it assigns to that rule the declared precedence of the operator that appears in its
right-hand side. Whenever there is a conflict between a reduction by this rule and a
shift of a terminal symbol that is not resolved by the LALR(1) method, it resolves
the conflict in favor of whichever has higher precedence: the rule (reduce) or the
terminal symbol (shift). When considering rules and terminal symbols of the same
precedence, it chooses the reduction if the symbol’s precedence was declared with
%left, and otherwise chooses the shift. The result is a pretty natural grammar
specification.

The rules are general enough that the same disambiguation can be applied to
things other than expressions. Normally, though, I’d avoid doing so and stick to
simple uses such as the example above. In particular, it’s a very bad idea to use
precedence declarations to resolve arbitrary shift-reduce conflicts in your grammar.
Outside of the stylized conflicts that occur in expressions, grammar conflicts usually
indicate errors in your grammar that you should fix rather than try to suppress.
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Chapter 4

Static Analysis: Scope and
Types

4.1 Terminology

Programs, in general, are simply collections of definitions of terms, which we often
call declarations1. Each declaration may use other declarations, referring to them
by the names they introduce. In programming languages, the scope of a declaration
that introduces some name is the portion of the program in which the meaning (or
a possible meaning) of that name is the one given by the declaration. Many authors
(from less distinguished institutions) refer loosely to the scope of a name as opposed
to the scope of a declaration. The term “scope of a name,” however, is clearly an
inadequate notion, since the same name may be used in multiple declarations.

4.2 Environments and Static Scoping

In CS61A, you saw an abstract model of both scope rules and rules about the extent
or lifetime of variables. In this model, there is, at any given time, an environment
consisting of a linked sequence of frames. Each frame contains bindings of names
to slots that can contain values. The value contained in a slot may be a function;
such a value consists of a pair of values: the body (or code) of the function and the
environment that gives the meaning of names used by the function when it executes.

Figure 4.1 illustrates the scope of declarations in C (or Java or C++). The
sections of text controlled by the various declarations of variables, parameters, and
functions are indicated by the brackets on the right. Brackets on the left indicate
declarative regions—portions of the text of a program that bound the scopes of the
declarations within. Declarations in C obey the rule that their scope runs from the
declaration to the end of the innermost declarative region that contains them. The
declarative regions in C are the boundaries of the source file itself, the boundaries of

1C and C++ distinguish declarations, which introduce (or re-introduce) names and some in-
formation about them from definitions, which provide complete information about names. A
declaration of a function tells us its name, parameter types, and return type. A definition of a
function tells us all this and also gives its body. In these notes, I will use the term declaration to
refer to both of these functions.

87
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each block ({...}), the parameter list and body of each function, and a few others.

The environment diagram in Figure 4.1 shows a snapshot of the program during
its execution. To find the current meaning (binding) of any identifier, one traverses
the environment structure from the current environment, following the pointers
(links) to enclosing environments, until one finds the desired identifier. Each frame
corresponds to an instance of some declarative region in the program. When a
function is called, a frame is created for that call that contains the variables declared
in that function with a static link that is set from the environment part of the
function (the leftmost “bubbles” in the figure). Inner blocks are treated like inner
functions, and have static links that point to instances of their enclosing blocks2.
Since the language in the example is C, all named functions’ environments are the
global environment, encompassing all declarations in a given source file.

As it was presented in CS61A, these environments are dynamic entities, con-
structed during execution time. However, it is a property of most languages—
including C, C++, Java, Pascal, Ada, Scheme, the Algol family, COBOL, PL/1,
Fortran, and many others—that at any given point in a program, the chain of envi-
ronment frames starting at the current environment is always the same at that point
in the program, except for the actual values in the slots of environment. That is,
the number of frames in the chain and the names in each of these frames is always
the same, and depends only on where in the program we are. We say that these
languages use use static scoping (also known as lexical scoping), meaning that their
scope rules determine static regions of text that are independent of any particular
execution of the program. The links between frames in this case are called static
links.

To see why this property holds (the constancy or staticness of the environment
chain), consider how the links get set in the first place. When a function value is
created in a statically scoped language (i.e., as opposed to being called), its value
is constructed from a code pointer and an environment pointer . The environment
pointer, furthermore, is always the current frame, which is a frame containing dec-
larations from the function whose text contains the definition of the function. The
environment pointer, in other words, depends only on where in the text of the pro-
gram the function is defined, and points to the same kind of frame (same names)
each time. When a function is called, a new current frame is created to contain
declarations of the function’s parameters and local variables, and its link (in these
languages) is copied from the environment pointer of the function being called.
Thus, every time a frame for a given function is created, its link always points to a
frame with the same structure.

4.3 Dynamic Scoping

An alternative rule (found in Logo, APL, SNOBOL, and early versions of Lisp,
among other languages) defines the scope of a declaration as proceeding from the
time at which the declaration is “executed” (or elaborated, to use Algol 68 terminol-
ogy) to the time it terminates. Under dynamic scoping, the link of an environment

2WARNING: This is a conceptual description. The actual execution of a program involves
different data structures, as we will see in later lectures
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x: 3.14

x: 42

f:  

g: 

x:  10

z:  13

y: 3

code for f

code for g

Environment

  Frames

int x=42;

void f (int y)

{

    S1;

    if (...) {

     int x=10;

     int z=13;

     S2;

    }

    S3;

}

void g ()

{

    f (3);

}

...  

File Function

    double x=3.14;

Scopes

global

env

E0:

E1:

E2:

E3:

Block

Declarative Regions

current frame

links (static)

environment

pointers

Figure 4.1: Scope of declarations in C. The brackets on the right indicate the scope
of the declarations in the program. The dashed portions of the rightmost bracket
(for the first declaration of x) indicate the portion of text in which its declaration
is hidden by another declaration. The brackets on the left are declarative regions,
which bound the scopes of items defined inside them. The environment diagram
below shows the situation during execution of the inner block of f, when it has been
called from g.
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frame for a function is equal to the current frame at the time of the call. To see the
distinction, consider the following program (in a C-like language):

int x = 3; /* (1) */

void f(int x) /* (2) */

{

g ();

}

void g ()

{

print (x);

}

void doit ()

{

int x = 12;

f(42);

g();

}

In normal C (or C++ or Java), this program would print ‘3’ twice. Were these lan-
guages to use dynamic scoping instead, it would print ‘42’, and then ‘12’. Figure 4.2
shows the environment structure during the two calls to g under static scoping and
under dynamic scoping. There isn’t one declaration of x in the body of g (hence
the term “dynamic”).

4.4 Compiler Symbol Tables

For languages with lexical scoping, the environment model suggests properties of a
data structure (or symbol table, as it is generally known) whereby a compiler can
keep track of definitions in the program it is processing. It can use the environ-
ment structure, but rather than store values in the slots of the frames, it can store
declarations (well, actually, pointers to things that represent these declarations).
This data structure allows the compiler to map any identifier in the program it is
processing to the declaration for that identifier (and thus to any information con-
tained in that declaration). Figure 4.3 shows how this would work for the example
in Figure 4.1.

We can make minor changes to the environment model to accommodate a range
of language features:

• Java and C++ both allow overloading of functions, based on argument types.
We model this by having the names include argument signatures. For example,
the function f in the figures could appear in its environment frame as

void f(int):
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x :  3

f : 

g :  

doit:  

code for f

code for g

code for doit

x:  12

x :  42
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doit

f
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g f

g

g

(a)

(b)

(d)
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x :  42

static links

dyanmic links

Figure 4.2: Situation during call to g in four situations: (a) called from f using
static scoping, (b) called from doit using static scoping, (c) called from f using
dynamic scoping, and (d) called from doit using dynamic scoping. Situations (a)
and (b) show what happens in languages like C, C++, Scheme, and Java (both
print 3). Situations (c) and (d) apply to older Lisps, APL, SNOBOL, and others
(case (c) prints 42 and (d) prints 12). The links between environments are static
for (a) and (b) and dynamic for (c) and (d). The static and dynamic links from
doit happen to be identical in this case.
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int x=42;

void f (int y)

{

    S1;

    if (...) {

     int x=10;

     int z=13;

     S2;

    }

    S3;

}

void g ()

{

    f (3);

}

...  

    double x=3.14;

x: 

f:  

g: 

y:

x: 

z: 

Symbol

Table

Figure 4.3: Adapting environment diagrams as symbol tables. This shows the com-
piler’s symbol table (in the abstract) when processing the inner block of f. Compare
this with Figure 4.1. The values in the previous diagram become declarations in
the symbol table. Each frame corresponds to a declarative region.
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• Many languages have structure types whose instances have fields (or mem-
bers). We can represent these types (or their instances) as environment frames.
In a context such as x.y, we look up y in starting from the environment that
represents x’s type.

• When languages have structure types with inheritance, as do C++ and Java,
it can be represented by having the static link of a frame representing one type
point to the parent or base type of that type. Where multiple inheritance is
legal (again as in C++ or Java), we can generalize the static link to be a set
of pointers rather than a single one.

4.5 Lifetime

Finally, we leave with one important point. The scope of a declaration refers only to
those sections of the program text where that declaration determines the meaning
of its name. This is a distinct concept from that of how long the named entity
actually exists. The latter is what we’ll call the lifetime of the entity. For example,
going back to Figure 4.1, the declaration of x inside the text of g is out of scope
(invisible) during execution of f, but the variable (slot) created by that declaration
does not go away. Nor does variable created by the first (global) declaration of x go
away in the “scope holes” where it is hidden. The situation in the C++ declaration

void f ()

{

Foo* x = new Foo;

g ();

other stuff involving x;

}

is even more complicated. The declaration of x introduces a variable called x and
then stores into it a pointer to an anonymous object (created by new) that is not
named by any declaration. The lifetime of a variable x ends upon return from the
call to f that creates it. The lifetime of the anonymous thing it points to, however,
continues until it is explicitly deleted. Both variable x and the object it points to,
of course, continue to exist during the call to g, even though the declaration of x is
not visible in g.

4.6 Static and Dynamic Typing

In programming languages, a type is a characteristic of an expression, parameter,
variable (or other entity that is, denotes, or holds a value) that characterizes what
values the entity may have (or denote or . . . ) and what operations may be applied
to it. When, as in Scheme, the type of a quantity is not determined, in general,
until a program is executed, we say the language is dynamically typed. When—as in
C, C++, FORTRAN, COBOL, Algol, Pascal, PL/1, or Java—the type of an entity
in a program is determinable solely from the text of the program, we say that the
language is statically typed.
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4.6.1 Type Equivalence

To define the typing rules of a language, one usually has to define what it means
for the types of two entities to match. For example, consider the following code in
C or C++:

struct { int x, y; } A, B;

struct { int x, y; } C;

struct T { int x, y; } D;

struct T E;

T* F;

T* G;

main()

{

A = B; /* OK */

A = C; /* Error: type mismatch */

A = D; /* Error: type mismatch */

D = E; /* OK */

F = G; /* OK */

}

The constructs ‘struct {...}’ and ‘...*’ are type constructors: given a set of type
parameters, represented here by ‘...’, they construct a new type.

As the comments show, the rule in C and C++ (also in Pascal, Ada, and many
other languages) is that each distinct occurrence of struct creates a brand new
type, differing from (not equivalent too) all other types, even those with identical
declarations. A and B have the same type, since it is “generated” by the same
instance of struct. D and E have the same type, since the definition of D introduces
the name T to stand for the newly-constructed type, and the declaration of E then
refers to that type by name. We call this kind of rule a name equivalence rule.

On the other hand, the types of F and G are identical, despite the fact that their
types come from two distinct instances of a generator. The two instances of T*
define types with identical structures: identical arguments to the type constructor.
The rule in C and C++ is that structurally identical pointer types are all the same.
We call this kind of rule a structural equivalence rule.

As you can see, Java, C, and C++ mix the two types of rule freely: array
types, pointer types, reference types (C++), and function types obey structural
equivalence rules, while class (struct) and union types obey name equivalence rules.
The languages Pascal and Ada, on the other hand, adhere more consistently to the
name equivalence model (array types, for example, are different if produced from
two separate constructors). The language Algol 68 adheres consistently to structural
equivalence (all the struct types in the example above are identical in Algol 68).

4.6.2 Coercion

Strict rules such as “both sides of an assignment statement must have exactly the
same type” usually prove to be unduly burdensome to programmers. Most lan-
guages therefore provide some set of implicit coercions that automatically convert
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one type of value to another. In Java, C, and C++, for example, we have the
standard numeric promotions, which convert, e.g., short and char values to int or
long. We also have the standard pointer conversions, which translate any pointer
to an object to a void*, and convert B* to A* if A is a base class of B.

4.6.3 Overloading

The purpose of name resolution (scope rule checking), is to associate declarations
with instances of names. Java and C++ introduces a new wrinkle—the possibility
of having several declarations referred to by the same name. For example,

int f(int x) { ... } /* (1) */

int f(A y) { ... } /* (2) */

In the presence of these declarations, scope rule checking will tell us that f in

f(3)

can mean either declaration (1) or (2). Until we analyze the type of the expression,
however, we can’t tell which of the two it is.

C++ requires that the decision between declarations (1) and (2) must depend
entirely on the types of the arguments to the function call. The following is illegal:

int f2(int x) { ... } /* (3) */

A f2(int x) { ... } /* (4) */

int x;

...

x = f2(3)

On the other hand, the language Ada allows these declarations (well, in its own
syntax), and is able to determine that since f2must return an int for the assignment
to be legal, one declaration (3) can apply. That is, Ada uses the result types of the
overloaded declarations as well as their argument types.

Both C++ and Ada provide for default parameters:

int g(int x, int y = 0) { ... } /* (5) */

This doesn’t really introduce anything new, however; we can treat it as

int g(int x, int y) { ... } /* (5a) */

int g(int x) { return g(x, 0); } /* (5b) */

C++ does not resolve function calls based on return types, but it does allow
user-defined conversions that may be chosen according to the required type of an
expression. For example,

class A {

public:

...

operator int() const { ... }

...

}
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defines an operator (which is, after all, just a function with an attitude) that will
convert an object of type A into an int, if one is needed in a given context. That
makes it legal to write, e.g.,

int h(int x) { ... }

A z;

...

h(z);

Any system of coercions as complex as that of C++ tends to give rise to un-
wanted ambiguities (several different ways of coercing the arguments of to a function
that match several different possible overloadings of the function). To counter this,
C++ has a complex set of rules that place a preference order on implicit coercions.
For example, given the definitions of f and A above, it is acceptable (unambiguous)
to write

A z;

... f(z)...

despite the fact that declaration (2) matches the call and declaration (1) matches
it after an application of the conversion defined from A to int. This is because the
rules indicate a preference for calls that do not need user-defined conversion.

Of all the features in this section, Java uses only overloading on the argument
type.

4.7 Unification (aka Pattern-Matching)

In C++, one can define template functions, such as

/* sort A[0..n-1] so that le(A[i], A[i+1]) for 0 <= i < n-1 */

template <class T>

void sort(T* A, int n, bool le(const T&, const T&))

{

...

}

which will work for any type T:

bool double_le(const double& x, const double& y)

{

return x <= y;

}

double V[100];

... sort(V, 100, double_le) ...

For each distinct T that is used in a call to sort, the compiler creates a new over-
loading of sort, by filling in the ‘T’ slot of the template with the appropriate type.
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This feature of C++ therefore raises the questions of how one matches a call against
a rule like this and how one determines what type to plug into T.

Given a call, such as sort(V, 100, double le), we can determine the types of
all the arguments, and represent them as a list of trees, such as the following (to
use Lisp notation).

(list

(ArrayType (DoubleType))

(IntType)

(FunctionType

((RefToConstant (DoubleType))

(RefToConstant (DoubleType)))

(BoolType)))

Likewise, we can do the same for the formal parameter list of sort:

(list

(ArrayType T)

(IntType)

(FunctionType

((RefToConstant T)

(RefToConstant T))

(BoolType)))

Each S-expression (AY1 · · · Yn) denotes a tree node with operator (label) A and n
children Yi. I’ve put in a dummy operator, list, in order to make the algorithm
below easier to write.

The task of seeing whether these two types match is one of pattern matching, or
to use the fancy phrase, unification: that is, finding a substitution for all the type
variables (here, the single template parameter T) that makes the two types identi-
cal. We call such substitutions—mappings of type variables to type expressions—
unifiers.

Our algorithm will take an initial unifier that defines any bindings that have
already been done, and produces a new unifier that extends the initial unifier to
make the two type-expression arguments identical. At the beginning of computing
a unifier for two expressions, we’d usually start with an empty unifier containing no
bindings. As the algorithm progresses, some type variables get bound, sometimes
to other type variables. As a result, there may be chains of type variables (never
circular). For some unifier, u, and type variable, T , we’ll define u[T ] as the ultimate
binding of u, following chains of bindings to their end:

u[T ] =

{

T, if T is not a bound type variable in u, or is bound to itself.
u[T ′], otherwise, where T is bound to T ′ in u.

We’ll use the notation u.bind(A,B) to mean “the extension of the unifier u that
also binds A to B.

We’ll use oper(t) to denote the operator of tree node t that is not a type
variable, and children(t) to give its children. The operator of a node in this case
is either a type constructor or a constant type (such as int).

We start with a simple version of unification:
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/* Iff some extension of the unifier u unifies type expression A with

* type expression B, return that extended unifier. Otherwise,

* return a null value. */

unify(A, B, u) {

A = u[A]; B = u[B];

if (A is a type variable unbound in u) {

if (A occurs in B) return null;

return u.bind(A, B);

if (B is a type variable unbound in u) {

if (B occurs in A) return null;

return u.bind(B, A);

}

if (oper(A) != oper(B)

|| length(children(A)) != length(children(B)))

return null;

for each child ca in children(A)

and corresponding child cb in children(B) {

u = unify(ca, cb, u) /* Extend u to unify ca and cb. */

if (u == null)

return null;

}

return u;

}

The algorithm binds free type variables and for other types, checks recursively that
they have the same structure. It includes two occurs checks to prevent circular
bindings in which a type variable is attempted to be bound in such a way as to
create a structure that includes itself.

To be honest, I’ve idealized the process that would actually be needed in “pro-
duction” languages such as Java or C++. There, types with differing operators
can match when there is a coercion between them. For example, the char type
can match int, char* can match const char* formal, or (in Java) String can
match Object. Indeed, such languages don’t really benefit all that much from this
particular formalization of type matching, since they are explicitly typed in any
case.

The process we’ve described is rather more useful with some interesting (and
better-designed) languages, such as those in the ML family.

4.7.1 Type inference

Languages such as ML make interesting use of unification to get static typing with-
out having to mention the types of things explicitly. For example, consider the
following function definition (the syntax is fictional):

sum(L) = if null(L) then 0 else head(L) + sum(tail(L)) fi;

Here, if...then...else...fi is a conditional expression, as for ‘if’ in Scheme or
‘?’ and ‘:’ in C. The rules for this fictional language say that
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• null is a family of functions (what is called a polymorphic function) whose
argument types are list of T for all types T , and whose return type is bool.

• head is a family of functions whose argument types are list of T and whose
return type is T for all types T .

• tail is a family of functions whose argument and return types are list of

T for all types T .

• ‘+’ takes two integers and returns an integer.

• The ‘then’ and ‘else’ clauses of an ‘if’ have to have the same type. That is
also the type of the ‘if’ as a whole.

• A (one-argument) function has a type T0 → T1 for some types T0 and T1. Its
arguments must have type T0 and its return value is type T1.

To begin with, we don’t know the types of L or sum. So, we initially say that
their types are the type variables T0 and T1, respectively. Now we apply the rules
using the matching procedure described above. We start with an empty unifier, and
update as follows (where u is the current version of the unifier):

• sum is a function, so its type (T1) must be T2 → T3 for some types T2 and
T3; as a result, u becomes unify(T1, T2 → T3, u).

• L is an argument to sum so update u to unify(T0, T2, u).

• The argument type of null is list of T4 for some type T4, so u becomes
unify(T0, list of T4, u).

• If the argument type to head is list of T4, the return type is T4.

• Since the operand types of ‘+’ must be int, update u to unify(T4,int,u).

• The return type of sum is the type returned by the ‘if’. That, in turn, must be
the same as the type of 0 (its ‘then’ clause). So, u becomes unify(T3,int,u).

Work this all through (executing all the ‘unify’ operations) and you will see that
we end up with the type of x (T0) being bound to list of int and that of sum
being bound to list of int → int in the final value of the unifier.

4.7.2 Recursive patterns

Suppose that we introduce a new, two-argument type constructor called pair, so
that something of type pair(T1, T2) denotes a something that is either null or has
a head of type T1 and a tail of type T2. In a dynamically typed language such as
Scheme, such a type allows one to construct list types, which are pairs in which
the tail is itself a list. This suggests a defining a list type variable, T as having the
property

T = pair(T1, T ).

However, the algorithm given in §4.7 put a limitation on legal bindings (the occurs
check):
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if (A occurs in B) return null;

Given the algorithm, such a restriction is hardly surprising. Consider the system of
equations

L1 = pair(T1, L1), L2 = pair(T1, L2), L1 = L2.

If you perform the indicated matches in sequence, you’ll find that the algorithm
goes into an infinite loop. In effect, the data structure described is infinite: a pair
containing a T1 and a pair containing a T1 and. . . . More usefully, we can look at it
as represented by a graph structure rather than a tree structure:

pair

T1

When considering structural equivalance of such types, we’ll define two types as
identical if any path of node labels (such as pair) and edges that exists in one also
exists in the other, always beginning at the corresponding “start” node in each. We
take edges as labeled—e.g. pair nodes have a left edge and a right edge—and the
edge labels in any two corresponding paths must match up. Thus, the following two
types are identical, even though one appears to have more nodes:

pair

T1

pair

T1 pair

T1

Fortunately, it’s relatively simple to modify the algorithm of §4.7 to these more
general types. Basically, as we traverse the structure, we link together nodes that
are supposed to represent equivalent types so that if we encounter them again (due
to circularities in one or the other structure), we can avoid rechecking them. After
linking the nodes, we then check recursively (as in the previous algorithm) that
the children are equivalent. To do all this, we extend the definition of binding,
so that all nodes (not just type variables) may be bound to an expression (and all
are initially unbound). With this understanding, the revised algorithm is nearly
identical to the previous one:
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/* Iff some extension of the unifier u unifies type expression A with

* type expression B, return that extended unifier. Otherwise,

* return a null value. */

unify(A, B, u) {

A = u[A]; B = u[B];

if (A == B) /* A and B are the same type object, therefore unified. */

return u;

if (A is a type variable unbound in u) {

return u.bind(A, B);

if (B is a type variable unbound in u) { /* X */

return u.bind(B, A);

u = u.bind(A, B) /* Try assuming that A and B will unify. */

if (oper(A) != oper(B)

|| length(children(A)) != length(children(B)))

return null;

for each child ca in children(A)

and corresponding child cb in children(B) {

u = unify(ca, cb, u) /* Extend u to unify ca and cb. */

if (u == null)

return null;

}

return u;

}

Each time we execute the body of unify, we either return without executing any
recursive calls or we reduce the number of unbound variables by one. Therefore,
the algorithm must terminate.

4.7.3 Overload resolution in Ada

C++ disallows

int f2(int x) { ... } /* (3) */

A f2(int x) { ... } /* (4) */

int x;

...

x = f2(3);

because the call on f2 cannot be resolved on the basis of the argument type alone.
Ada, on the other hand, does allow this situation (well, with a different syntax, of
course).

To make the problem uniform, first of all, we can treat all operators as functions.
Thus, we rewrite

x = f2(3);

as

operator=(x, f2(3));
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When only argument types matter, it is easy to resolve overloaded functions:

• Find the types of the arguments (recursively resolving overloading of nested
calls).

• Look at all definitions of the function in question for one whose formal param-
eters match the resulting list of argument types (as for the match procedure
above).

When the return type of a function matters, however, things get complicated.
The naive approach is to try all combinations of definitions of all functions men-

tioned in an expression (for the example above, all possible definitions of operator=
with all possible definitions of f2). If the average number of overloadings for any
function definition is k (the geometric mean, to be precise), and the number of
function calls in an expression is N , then this naive procedure requires Ω(Nk) time,
which is definitely bad.

A much better procedure is the following. We operate on an abstract syntax
tree representing an expression.

• Perform a post-order traversal of the tree determining a list of possible types
for the expression:

– If the expression is a literal or variable, return its (single) possible type.

– If the expressions is a function call,

∗ recursively determine the possible types for each operand;

∗ look at all overloadings of the function and find which of them match
one of the possible types in each argument position.

∗ return the list of return types for each of the overloadings that match.

• If this procedure results in more than one possible type for the expression as
a whole, the expression is ambiguous and there is an error.

• Otherwise, perform a pre-order traversal of the tree, passing down the (single)
type, R that the expression must have:

– If the expression is a literal or variable, nothing needs to be done on this
pass.

– For a function call, check that only one of the possible overloaded defini-
tions for the called function (determined on the post-order pass) returns
the given type, R. If not, there is an error.

– Otherwise, the single definition selected in the preceding step determines
the types of the arguments. Recursively resolve the argument expres-
sions, passing down these argument types as R.


