
Lecture 9: Deterministic Bottom-Up Parsing

• (From slides by G. Necula & R. Bodik)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 1

Avoiding nondeterministic choice: LR

• We’ve been looking at general context-free parsing.

• It comes at a price, measured in overheads, so in practice, we de-
sign programming languages to be parsed by less general but faster
means, like top-down recursive descent.

• Deterministic bottom-up parsing is more general than top-down pars-
ing, and just as efficient.

• Most common form is LR parsing

– L means that tokens are read left to right

– R means that it constructs a rightmost derivation

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 2

An Introductory Example

• LR parsers don’t need left-factored grammars and can also handle
left-recursive grammars

• Consider the following grammar:

E : E + (E) | int

(Why is this not LL(1)?)

• Consider the string: int + (int) + (int) .

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 3

The Idea

• LR parsing reduces a string to the start symbol by inverting produc-
tions. In the following, sent is a sentential form that starts as the
input and is reduced to the start symbol, S:

 sent = input string of terminals

while sent 6= S:

 Identify first β in sent such that A : β is a production

 and S ∗
=⇒ αAγ ⇒ αβγ = sent.

 Replace β by A in sent (so that αAγ becomes new sent).

• Such αβ ’s are called handles.

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 4

A Bottom-up Parse in Detail (1)

Grammar:

E : E + (E) | int

int + (int) + (int)

intint + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 5

A Bottom-up Parse in Detail (2)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

(handles in red)

E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 6

A Bottom-up Parse in Detail (3)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 7

A Bottom-up Parse in Detail (4)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E

E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 8

A Bottom-up Parse in Detail (5)

Grammar:

E : E + (E) | int

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E + (E)

E

E E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 9

A Bottom-up Parse in Detail (6)

Grammar:

E : E + (E) | int

A reverse rightmost
derivation:

int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E + (E)

E

E

E

E E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 10

Where Do Reductions Happen?

Because an LR parser produces a reverse rightmost derivation:

• If αβγ is one step of a bottom-up parse with handle αβ

• And the next reduction is by A : β,

• Then γ must be a string of terminals,

• Because αAγ ⇒ αβγ is a step in a rightmost derivation

Intuition: We make decisions about what reduction to use after seeing
all symbols in the handle, rather after seeing only the first (as for
LL(1)).

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 11

Notation

• Idea: Split the input string into two substrings

– Right substring (a string of terminals) is as-yet unprocessed by
parser

– Left substring has terminals and nonterminals

– (In examples, we’ll mark the dividing point with |.)

– The dividing point marks the end of the next potential handle.

– Initially, all input is unexamined: |x1x2 · · · xn

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 12

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

• Shift: Move | one place to the right, shifting a terminal to the left
string.

– For example,

E + (| int) −→ E + (int |)

• Reduce: Apply an inverse production at the handle.

– For example, if E : E + (E) is a production, then we might reduce:

E + (E + (E) |) −→ E +(E |)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 13

Accepting a String

• The process ends when we reduce all the input to the start symbol.

• For technical convenience, however, we usually add a new start sym-
bol and a hidden production to handle the end-of-file:

S’ : S ⊣

• Having done this, we can now stop parsing and accept the string
whenever we reduce the entire input to

S | ⊣

without bothering to do the final shift and reduce.

• This will be the convention from now on.

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 14

Shift-Reduce Example (1)

Sent. Form Actions

| int + (int) + (int) ⊣ shift

Grammar:

E : E + (E) | int

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 15

Shift-Reduce Example (2)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int

Grammar:

E : E + (E) | int

E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 16

Shift-Reduce Example (3)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times

Grammar:

E : E + (E) | int

E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 17

Shift-Reduce Example (4)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int

Grammar:

E : E + (E) | int

E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 18

Shift-Reduce Example (5)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift

Grammar:

E : E + (E) | int

E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 19

Shift-Reduce Example (6)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)

Grammar:

E : E + (E) | int

E

E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 20

Shift-Reduce Example (7)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times

Grammar:

E : E + (E) | int

E

E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 21

Shift-Reduce Example (8)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int

Grammar:

E : E + (E) | int

E

E E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 22

Shift-Reduce Example (9)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int
E + (E |) ⊣ shift

Grammar:

E : E + (E) | int

E

E E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 23

Shift-Reduce Example (10)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int
E + (E |) ⊣ shift
E + (E) |⊣ reduce by E: E+(E)

Grammar:

E : E + (E) | int

E

E

E E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 24

Shift-Reduce Example (11)

Sent. Form Actions

| int + (int) + (int) ⊣ shift
int | + (int) + (int) ⊣ reduce by E: int
E | + (int) + (int) ⊣ shift 3 times
E + (int |) + (int) ⊣ reduce by E: int
E + (E |) + (int) ⊣ shift
E + (E) | + (int) ⊣ reduce by E: E+(E)
E | + (int) ⊣ shift 3 times
E + (int |) ⊣ reduce by E: int
E + (E |) ⊣ shift
E + (E) |⊣ reduce by E: E+(E)
E |⊣ accept

Grammar:

E : E + (E) | int

E

E

E E E

int + (int) + (int)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 25

The Parsing Stack

• The left string (left of the |) can be implemented as a stack:

– Top of the stack is just left of the |.

– Shift pushes a terminal on the stack.

– Reduce pops 0 or more symbols from the stack (corresponding to
the production’s right-hand side) and pushes a nonterminal on the
stack (the production’s left-hand side).

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 26

Key Issue: When to Shift or Reduce?

• Decide based on the left string (“the stack”) and some of the re-
maining input (lookahead tokens)—typically one token at most.

• Idea: use a DFA to decide when to shift or reduce:

– DFA alphabet consists of terminals and nonterminals.

– The DFA input is the stack up to potential handle.

– DFA recognizes complete handles.

– In addition, the final states are labeled with particular produc-
tions that might apply, given the possible lookahead symbols.

• We run the DFA on the stack and we examine the resulting state, X
and the lookahead token τ after |.

– If X has a transition labeled τ then shift.

– If X is labeled with “A : β on τ ,” then reduce.

• So we scan the input from Left to right, producing a (reverse)
Rightmost derivation, using 1 symbol of lookahead: giving LR(1) pars-
ing.

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 27

LR(1) Parsing. An Example

0
int

1
E: int

on ’⊣’, ’+’

2
+

3
(

4

E

accept
on ’⊣’

7
)

6 5

E: E + (E)
on ’⊣’, ’+’

E: int
on ’)’, ’+’

E int

8
(

9

+ int

10
)

11
E: E+(E)
on ’)’, ’+’

+ E

|0 int + (int) + (int) ⊣ shift
int |1 + (int) + (int) ⊣ red. by E: int
E |2 + (int) + (int) ⊣ shift 3 times
E + (int |5) + (int) ⊣ red. by E: int
E + (E |6) + (int) ⊣ shift
E + (E) |7 + (int) ⊣ red. by E: E+(E)
E |2 + (int) ⊣ shift 3 times
E + (int |5) ⊣ red. by E: int
E + (E |6) ⊣ shift
E + (E) |7 ⊣ red. by E: E+(E)
E |2 ⊣ accept

(Subscripts on |show the states
that the DFA reaches by scanning
the left string.)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 28

LR(1) Parsing. Another Example

0
int

1
E: int

on ’⊣’, ’+’

2
+

3
(

4

E

accept
on ’⊣’

7
)

6 5

E: E + (E)
on ’⊣’, ’+’

E: int
on ’), ’+’

E int

8
(

9

+ int

10
)

11
E: E+(E)
on ’)’, ’+’

+ E

|0 int + (int + (int + (int))) ⊣ shift
int |1 + (int + (int + (int)))⊣ red. by E: int
E |2 + (int) + (int + (int))) ⊣ shift 3 times
E + (int |5) + (int + (int))) ⊣ red. by E: int
E + (E |6) + (int + (int))) ⊣ shift

... ...
E + (E + (E + (int|5))) ⊣ red. by E: int
E + (E + (E + (E|10))) ⊣ shift
E + (E + (E + (E) |11)) ⊣ red. by E: E + (E)
E + (E + (E |10)) ⊣ shift
E + (E + (E)|11) ⊣ red. by E: E + (E)
E + (E|6) ⊣ shift
E + (E)|7 ⊣ red. by E: E + (E)
E |2 ⊣ accept

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 29

Representing the DFA

• Parsers represent the DFA as a 2D table, as for table-driven lexical
analysis

• Lines correspond to DFA states

• Columns correspond to terminals and nonterminals

• Classical treatments (like Aho, et al) split the columns into:

– Those for terminals: the action table.

– Those for nonterminals: the goto table.

The goto table contains only shifts, but conceptually, the tables are
very much alike as far as the DFA is concerned.

• The classical division has some advantages when it comes to table
compression.

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 30

Representing the DFA. Example

Here’s the table for a fragment of our DFA:

3
(

4

6 5

E int

E: int
on ’)’, ’+’

7

)

E: E+(E)
on ’⊣’, ’+’

int + () ⊣ E

. . .

3 s4

4 s5 s6

5 rE: int rE: int

6 s7

7 rE: E+(E) rE: E+(E)

. . .

Legend: ‘sN ’ means “shift (or go to) state N .”
‘rP ’ means “reduce using production P .”
blank entries indicate errors.

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 31

A Little Optimization

• After a shift or reduce action we rerun the DFA on the entire stack.

• This is wasteful, since most of the work is repeated, so

• Memoize: instead of putting terminal and nonterminal symbols on
the stack, put the DFA states you get to after reading those sym-
bols.

• For example, when we’ve reached this point:

E + (E + (E + (int|5))) ⊣

store the part to the left of |as

0 2 3 4 6 8 9 10 8 9 5

• And don’t throw any of these away until you reduce them.

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 32

The Actual LR Parsing Algorithm

Let I = w1w2 . . . wn be initial input

Let j = 1

Let stack = < 0 >

repeat

case table[top_state(stack), I[j]] of

sk:

push k on the stack; j += 1

rX: α:

pop len(α) symbols from stack

push j on stack, where table[top_state(stack), X] is sj.

accept:

return normally

error:

return parsing error indication

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 33

Parsing Contexts

• Consider the state describing the situation at the | in the stack
E + (| int)+(int), which tells us

– We are looking to reduce E: E + (E), having already seen E + (from
the right-hand side.

– Therefore, we expect that the rest of the input starts with
something that will eventually reduce to E:

E: int or E: E+(E)

after which we expect to find a ‘)’,

– but we have as yet seen nothing from the right-hand sides of
either of these two possible productions.

• One DFA state captures a set of such contexts in the form of a set
of LR(1) items, like this:

[E: E + (• E), ...] [E: • int, ’+’] (why?)

[E: • int, ’)’] [E: • E+(E), ’+’] (why?)

[E: • E+(E), ’)’]

• (Traditionally, use • in items to show where the | is.)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 34

LR(1) Items

• An LR(1) item is a pair:

X: α•β, a

– X: αβ is a production.

– a is a terminal symbol (an expected lookahead).

• It says we are trying to find an X followed by a.

• and that we have already accumulated α on top of the parsing stack.

• Therefore, we need to see next a prefix of something derived from
βa.

• (As an abbreviation, we’ll usually write

X: α•β, a/b

to mean the two LR(1) items

X: α•β, a
X: α•β, b

)

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 35

Constructing the Parsing DFA

• The idea is to borrow from Earley’s algorithm (where we’ve already
seen this notation!).

• We throw away a lot of the information that Earley’s algorithm
keeps around (notably where in the input each current item got in-
troduced), because when we have a handle, there will only be one
possible reduction to take based on what we’ve seen so far.

• This allows the set of possible item sets to be finite.

• Each state in the DFA has an item set that is derived from what
Earley’s algorithm would do, but collapsed because of the informa-
tion we throw away.

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 36

Constructing the Parsing DFA: Partial Example

0
S: •E ⊣,
E: •E+(E), ⊣/+
E: •int, ⊣/+

1
E: int •, ⊣/+

E: int
on ’⊣’, ’+’int

2
S: E •⊣,
E: E •+ (E), ⊣/+

accept
on ’⊣’

E
3E: E+•(E), ⊣/+

+

4E: E+(•E), ⊣/+
E: •int,)/+
E: •E + (E),)/+

(

5

E: int •,)/+
E: int

on ’)’, ’+’

int

6
E: E+(E•), ⊣/+
E: E•+ (E),)/+

E

)

• • •

+

• • •

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 37

LR Parsing Tables. Notes

• We really want to construct parsing tables (i.e. the DFA) from CFGs
automatically, since this construction is tedious.

• But still good to understand the construction to work with parser
generators, which report errors in terms of sets of items.

• What kind of errors can we expect?

Last modified: Mon Feb 11 01:09:47 2019 CS164: Lecture #9 38

	Lecture 9: Deterministic Bottom-Up Parsing
	Avoiding nondeterministic choice: LR
	An Introductory Example
	The Idea
	A Bottom-up Parse in Detail (1)
	A Bottom-up Parse in Detail (2)
	A Bottom-up Parse in Detail (3)
	A Bottom-up Parse in Detail (4)
	A Bottom-up Parse in Detail (5)
	A Bottom-up Parse in Detail (6)
	Where Do Reductions Happen?
	Notation
	Shift-Reduce Parsing
	Accepting a String
	Shift-Reduce Example (1)
	Shift-Reduce Example (2)
	Shift-Reduce Example (3)
	Shift-Reduce Example (4)
	Shift-Reduce Example (5)
	Shift-Reduce Example (6)
	Shift-Reduce Example (7)
	Shift-Reduce Example (8)
	Shift-Reduce Example (9)
	Shift-Reduce Example (10)
	Shift-Reduce Example (11)
	The Parsing Stack
	Key Issue: When to Shift or Reduce?
	LR(1) Parsing. An Example
	LR(1) Parsing. Another Example
	Representing the DFA
	Representing the DFA. Example
	A Little Optimization
	The Actual LR Parsing Algorithm
	Parsing Contexts
	LR(1) Items
	Constructing the Parsing DFA
	Constructing the Parsing DFA: Partial Example
	LR Parsing Tables. Notes

