Lecture 7: General and Bottom-Up Parsing

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 1

Parsing So Far

e We have seen that recursive-descent parsing it a simple and straight-
forward way to convert a grammar to a program that parses source
using that grammar.

e However, because one has to predict which production to take with-
out having seen the source tokens to be produced, it needs workarounds,
as we've seen.

e In particular, must eliminate left-recursion and perform left fac-
toring to make sure that branches are unique.

e So let's see what happens when we put off the decision about what
production to use until after we've examined the text to be pro-

duced.

e This entails processing the children of a node in the parse tree be-
fore deciding on the production for that node; we determine the
parse tree from the bottom up.

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 2

A Little Notation

Here and in lectures to follow, we'll often have to refer to general
productions or derivations. In these, we'll use various alphabets to mean
various things:

e Capital roman letters are nonterminals (A4, B,...).
e Lower-case roman letters are terminals (or tokens, characters, etc.)

e Lower-case greek letters are sequences of zero or more terminal
and nonterminal symbols, such as appear in sentential forms or on
the right sides of productions (o, 3, .. .).

e Subscripts on lower-case greek letters indicate individual symbols
within them, so @ = a1, ..., and each «; is a single terminal or
honterminal.

So A ;= a might describe the productione ::= e '+’ t,
...and B = aAy = af3y might describe the derivation steps

e —>e '+’ t =e ’+’ ID
(aise ’+7; Aist; Bise; and 7 is empty.)

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 3

Fixing Recursive Descent

e First, let's define an impractical but simple implementation of a top-
down parsing routine.

e For nonterminal A and string S=c;c; ... ¢,, we'll define parse(A, S) to
return the length of a valid prefix of S derivable from A.

e That is, parse(A, cics ... c,) = k, where

C1Co . ..CLCL11Ck19 ... Cp

*

A=

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 4

Abstract body of parse(A,S)

e Can formulate top-down parsing analogously to NFAs.

parse (A, S):
"""Assuming A is a nonterminal and S = c¢jcy...c, is a string, return
integer k such that A can derive the prefix string c¢;j...c; of S."""
Choose production ‘A: ajas---a,’° for A (nondeterministically)

k=20
for x in oy, a9, -+, Qu:
if x is a terminal:
if x == Cpyq:
k += 1
else:
GIVE UP
else:

k += parse (X, Cpi1---Cp)
return k

e Let the start symbol be p with exactly one production: p ::= v .

e We'll say that a call o parse returns a value if some set of choices
for productions (the blue step) would not give up (just like NFA).

e Then if parse(p, S) returns a value, S must be in the language.

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 b

Example

Consider parsing S="ID+*IDH" with a grammar from last time:

p ::=e '’
e ::= ¢t
| e °/7 t
| e "%’ t
t = ID

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 6

Example

Consider parsing S="ID+*IDH" with a grammar from last time:

) A failing path through the program:

p ::= e
¢ =t parse(p, S):
e/t Choose p ::= e ’’:
e 7%’ ¢ parse(e, S):
T = 1D Choose e ::= t:
parse(t, S):
choose t ::= ID:
check S[1] == ID; OK, so k3 += 1;
return 1 (= k3; added to k)
k, means “the vari- return 1 (and add to ki)
able k in the call to Check S[2] == S[k;+1] == *+’: GIVE UP
parse that is nested (8[2] == ’%’)
i deep.” Outermost k
IS kj.

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 6

Example

Consider parsing S="ID+*IDH" with a grammar from last time:

p ii= e ' A successful path through the program:
e ::= ¢t parse(p, S):
| e °/7 t Choose p ::= e ’H’:
| e "% ¢ parse(e, S):
_ Choose e ::= e ’%’ t:
t o= 1D parse(e, S):
choose e ::= t:
parse(t, S):
choose t ::= ID:

check S[1] == ID; 0K, return 1

k- Y i"
; means “the var return 1 (so k, += 1)

able k in the call to

check S[ky] == ’*’; 0K, ko += 1
parse that is nested parse(t, Si): # S == "ID "
'l: deep." OUTer‘mOST k choogse t ::= ID:
is ky. Likewise for S;. check Sslks+1] == S3[1] == ID; OK
ks+=1; return 1 (so ky += 1)
return 3
Check S[k;+1] == S[4] == ’+H’: OK

ki +=1; return 4

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 6

Making a Deterministic Algorithm

e If we had an infinite supply of processors, could just spawn new ones
at each "Choose" line.

e Some would give up, some loop forever, but on correct programs, at
least one processor would get through.

e To do this for real (say with one processor), need to keep track of
all possibilities systematically.

e This is the idea behind Earley's algorithm:

- Handles any context-free grammar.
- Finds all parses of any string.

- Can recoghize or reject strings in O(N?) time for ambiguous gram-
mars, O(N?) time for “nondeterministic grammars”, or O(N) time
for deterministic grammars (such as accepted by Bison or CUP).

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 7

Earley's Algorithm: I

e First, reformulate to use recursion instead of looping. Assume the
string S =c;- - ¢, is fixed.

e Redefine parse:

parse (A: ce 3, s, k):
"""Assumes A: of is a production in the grammar,
0 <= s <= k <= n, and « can produce the string cg;1---¢.
Returns integer j such that [can produce cpyq---c;."""

e Or diagrammatically, parse returns an integer j such that:

Cl - CsCsyl " CkChy1 " CjCjp1" " Cy

* *

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 8

Earley's Algorithm: IT

parse (A ::= acef3, s, k):

"""Assumes A ::= aff is a production in the grammar,
0 <= s <= k <= n, and « can produce the string cg;1---c.
Returns integer j such that [can produce cpyy---c;."""

if 8 is empty:
return k

Assume [has the form xz¢

if x is a terminal:

if © == ¢
return parse(A ::= ared, s, k+1)
else:
GIVE UP
else:
Choose production ‘x ::= kK’ for x (nondeterministically)
j = parse(x ::= ex, k, k)
return parse (A ::= ared, s, j)

e Now do all possible choices that result in such a way as to avoid
redundant work ("nondeterministic memoization").

e That is, if parse is called with the same three arguments as a pre-
vious call, just use the result(s) of the previous call.

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 9

Chart Parsing

e Idea is to build up a table (known as a chart) of all calls to parse
that have been made.

e Only one entry in chart for each distinct triple of arguments
(A ::= e f3,s, k).

e We'll organize table in columns numbered by the k parameter, so
that column k represents all calls that are looking at c¢;.; in the
input.

e Each column contains entries with the other two parameters: [A ::= « e [3,5],
which are called items.

e The columns, therefore, are item sets.

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 10

Example

Grammar Input String
p:i=e P - T+ T -
e ::=s1 | e’+ e
s ::= -7 |

Chart. Headings are values of k& and ¢ (raised symbols). Item labels

(a-f) trace the "ancestry” of each item. (Have shortened ": :="to ":' for
compacthness.)
0 - 1 L 2 * 3 :
ap: ee *1’, 0 ds: -’e, O|lce: s Je, O b.e: e '+’ ee, 0
b.e: ee ’+’ e, O|ce: sel, O |pbe: e o'+’ e, Olee: os I, 3
ce: es I, O f.s: e, 3
ds: =20 ee: s oI, 3
4 : 5
ee: s e, 3 ap: e’ e, 0
b.e: e ’+’ eco, 0
ap: ee’4’, 0

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 11

Example, completed

e Last slide showed only those items that survive and get used. Algo-
rithm actually computes dead ends as well (in red).

0 - 1 L 2 3
ap: ee 17, 0 ds: ’-’e, O|ce: s e, O b.e: e '+’ ee, O
b.e: ee ’+’ e, Olce: sel, O |be: e o'+’ ¢, eee: oes I, 3
ce: es I, O ap: e® 17 0 |[fs: e, 3
ds: e -=",0 ee:. s el, 3
gs: e, 0 is: e ’=? 3
he: s eI, 0 je: ee '+’ e, 3
4 3 5
e.e: s Je, 3 ap: e 1 e, 0
b.e: e '+’ eo, O
ap: e’ 0
je: e ® '+’ e, 3

Last modified: Mon Feb 11 01:05:40 2019

CS164: Lecture #7 12

Ambiguous Example
Grammar Input String
p ::=e ' I +1I+ I

e ::=1 | e "+’ e

Chart. Only useful items shown.

0 L 1 * 2 I 3
ap: e 17, 0 |ce: I e, 0 be: e >+’ee, 0 |[de: I e,
b.e: ee ’+’ e, O|b.e: e ’+’ e, O|de: oI, 2 b.e: e ’+’
ce: oI, O eec. e '+’ e, 2|ee: e o'+’

b.e: e o’+’

4 I 5 3 6
be: e ’+’ ee, O|fe: I o, 4 ap: e e, O
ee: e '+’ ee, 2|/be: e '+’ e o, O
f.p: ol, 4 ee: e '+’ e o, 2

ap: e o1, 0

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 13

Adding Semantic Actions

e Using syntax-directed translation tfo get semantic values is pretty
much like recursive descent.

e The call parse(A: ae 3, s, k) canreturn, in addition to j, the se-
mantic value of the A that matches symbols ¢, - - - ¢;.

e The value is computed during calls of the form parse(A: e, s, k)
(i.e., where the 3 part is empty). For terminal symbols, value is
provided by the lexer.

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 14

Adding Semantic Actions (II)

e On a chart, when we see an item A: «e, s in column k&, it tells us to

- Perform the semantic action corresponding to the productionA ::= «,
getting a semantic value v for the left-hand side A.

- For eachitemB: (3 e Ay, tincolumn s of the chart, when adding
the item B: SAe~, t to column k, also attach value v to that
instance of A in the new item.

- For all items derived fromB: (S e Ay, tasits dotis shifted, also
attach v to the same instance of A.

This step is what provides the values of nonterminals needed to com-
pute v values (in Bison notation: $1, $2, etc.; in CUP notation, labels
suchaselande2intherulee 1= e:el’ 4 e:e2).

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 15

Example with Semantic Values

)_|)

'+7 b

ct & ®© O 'C
ct H ® c O
pPp P P TP

%7 1:b

Grammar
{: RESULT = a; :}
{: RESULT = b; :}
{: RESULT = a + b;
{: RESULT = a; :}
{: RESULT = a * b;

Input String
(I's are numerals).

1 + 3 % 2

Chart. Only useful items shown. Semantic values are subscripts; red
items show where they are computed.

0 L1 1 * 2 I3 3 *
ap: ee *1’, 0 dti: I; e, O b.e: e; '+’et, O|ety: Is @, 2
b.e: ee ’+’ t, O|cey: t; o, O et: oI, 2 f.t: tg %’ I, 2
ce: ot, O b.e: e; o+’ t, O|ft: et x> I, 2
dt: eI, O

4 I, 5 3 6
f.t: tg ’x’ eI, 2/f tg: tg %’ I, @, 2|apr: ey —eo, O

b.er: e; '+’ t; o, O
ap: e; o1, O

Last modified: Mon Feb 11 01:05:40 2019

CS164: Lecture #7 16

Handling Ambiguity in Semantics (Sketch)

e Ambiguity really only important here when computing semantic ac-
tions.

e Rather than being satisfied with a single path through the chart, we
look at all paths.

e The call parse(A: ae 3, s, k) canreturna set of semantic values.

e Accordingly, we attach sets of semantic values to nonterminals.

Last modified: Mon Feb 11 01:05:40 2019 CS164: Lecture #7 17

	Lecture 7: General and Bottom-Up Parsing
	Parsing So Far
	A Little Notation
	Fixing Recursive Descent
	Abstract body of parse(A,S)
	Example
	Making a Deterministic Algorithm
	Earley's Algorithm: I
	Earley's Algorithm: II
	Chart Parsing
	Example
	Example, completed
	Ambiguous Example
	Adding Semantic Actions
	Adding Semantic Actions (II)
	Example with Semantic Values
	Handling Ambiguity in Semantics (Sketch)

