Lecture 6: Top-Down Parsing

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 1

Beating Grammars into Programs

e A BNF grammar looks like a recursive program. Sometimes it works
to treat it that way.

e Assume the existence of

- A function ‘'next’ that returns the syntactic category of the next
token (without side-effects);

- A function 'scan(C) that checks that the next syntactic category
is C and then reads another token into next(). Returns the previ-
ous value of next().

- A function ERROR for reporting errors.

e Strategy: Translate each nonterminal, A, into a function that reads
an A according to one of its productions and returns the semantic
value computed by the corresponding action.

e Result is a recursive-descent parser.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 2

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
sexp ::= atom
| >’ elist ’)’
| ’\’’ sexp
elist ::= €
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():

def sexp ():
if

elif

else:

def atom ():
if

else:

def elist ():
if

CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
sexp ::= atom
| >’ elist ’)’
| ’\’’ sexp
elist ::= €
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():
sexp(); scan(-)

def sexp ():
if

elif

else:

def atom ():
if

else:

def elist ():
if

CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
Sexp ::= atom
| >’ elist ’)’
| ’\’’ sexp
elist ::= ¢
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():

sexp(); scan(-)

def sexp ():

if next() in [SYM, NUM, STRING]:

atom()
elif

else:

def atom ():
if

else:

def elist ():
if

CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
Sexp ::= atom
| >’ elist ’)’
| ’\’’ sexp
elist ::= ¢
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():
sexp(); scan(-)

def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif next() == ’(:
scan(’ (?); elist(); scan(’)’)
else:

def atom ():
if

else:

def elist ():
if

CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
Sexp ::= atom
| >’ elist ’)’
| ’\’’ sexp
elist ::= ¢
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():
sexp(); scan(-)

def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif next() == ’(:

scan(’ (?); elist();

scan(’)?)

else:
scan(’\’’); sexp()

def atom ():
if

else:

def elist ():
if

CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
Sexp ::= atom
| >’ elist ’)’
| >\’’ sexp
elist ::= ¢
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():
sexp(); scan(-)

def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif next() == ’(:

scan(’ (?); elist();

scan(’)?)

else:
scan(’\’’); sexp()

def atom ():

if next() in [SYM, NUM, STRING]:

scan (next ())

else:

def elist ():
if

CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
Sexp ::= atom
| >’ elist ’)’
| >\’’ sexp
elist ::= ¢
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():
sexp(); scan(-)

def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif next() == ’(:

scan(’ (?); elist();

scan(’)?)

else:
scan(’\’’); sexp()

def atom ():

if next() in [SYM, NUM, STRING]:

scan (next ())

else:
ERROR ()

def elist ():
if

CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar
prog ::= sexp '’
Sexp ::= atom
| >’ elist ’)’
| >\’’ sexp
elist ::= ¢
| sexp elist
atom ::= SYM
| NUM
| STRING

Last modified: Tue Feb 5 17:11:49 2019

def prog ():
sexp(); scan(-)

def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif next() == ’(:
scan(’ (?); elist(); scan(’)’)
else:

scan(’\’’); sexp()

def atom ():
if next() in [SYM, NUM, STRING]:
scan (next ())

else:
ERROR ()

def elist ():

if next() in [SYM, NUM, STRING, ’(’, "’"]:

sexp(); elist();

CS164: Lecture #7 3

Expression Recognizer with Actions

e Can make the nonterminal functions return semantic values.

e Assume lexer somehow supplies semantic values for tokens, if needed
elist ::= € {: RESULT = emptyList; :}
| sexp:head elist:tail {: RESULT = cons(head, tail); :}

def elist ():
if next() in [SYM, NUM, STRING, (>, "’>"]:

else:
return emptyList

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 4

Expression Recognizer with Actions

e Can make the nonterminal functions return semantic values.

e Assume lexer somehow supplies semantic values for tokens, if needed

elist ::= € {: RESULT = emptyList; :}

| sexp:head elist:tail {: RESULT = cons(head, tail);

def elist ():
if next() in [SYM, NUM, STRING, *(’>, "’"]:
vl = sexp(); v2 = elist(); return cons(vl,v2)
else:
return emptyList

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 4

.}

Grammar Problems I

In a recursive-descent parser, what goes wrong here?

e J_|J

t:tl {: RESULT = t1; :}

e:1ft ’/’ t:rgt {: RESULT = makeTree(DIV, 1ft, rgt); :}
e:1ft ’*’ t:rgt {: RESULT = makeTree(MULT, 1ft, rgt); :}

o
I

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 b

Grammar Problems I

In a recursive-descent parser, what goes wrong here?

p ::=e '’

e ::= t:tl {: RESULT = t1; :}
| e:1ft ’/’ t:rgt {: RESULT = makeTree(DIV, 1ft, rgt); :}
| e:1ft ’%’ t:rgt {: RESULT = makeTree(MULT, 1ft, rgt); :}

If we choose the second of third alternative for e, we'll get an infinite
recursion. If we choose the first, we'll miss '/’ and 'x' cases.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 b

Grammar Problems II

Well then: What goes wrong here?

e J_|J

t:tl {: RESULT = t1; :}

t:1ft ’/’ e:rgt {: RESULT = makeTree(DIV, 1ft, rgt); :}
t:1ft ’*’ e:rgt {: RESULT = makeTree(MULT, 1ft, rgt); :}

o
I

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 6

Grammar Problems II

Well then: What goes wrong here?

p ::=e '’
e ::= t:tl {: RESULT = t1; :}

| t:1ft ’/’ e:rgt {: RESULT = makeTree(DIV, 1ft, rgt); :}
| t:1ft ’*’ e:rgt {: RESULT = makeTree(MULT, 1ft, rgt); :}

No infinite recursion, but we still don't know which right-hand side to
choose for e.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 6

FIRST and FOLLOW

e If o is any string of terminals and nonterminals (like the right side
of a production) then FIRST(«) is the set of terminal symbols that
start some string that « produces, plus ¢ if a can produce the empty
string. For example:

p ::=e '’
e ::= 8t
s 1:=€ | 7+ | =7
t ::=1ID | 2C e ?)°
Sincee = st = (e) = ..., weknow that '(' € FIRST(e).

Since s = ¢, we know that € € FIRST(s).

e If X is anon-terminal symbol in some grammar, GG, then FOLLOW(X)
is the set of terminal symbols that can come immediately after X
in some sentential form that G can produce. For example, since p
= e 41 = stHd= s’C e’)’ 4 = ..., we know that
'(" € FOLLOW(s).

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 7

Using FIRST and FOLLOW

e In a recursive-descent compiler where we have a choice of right-
hand sides to produce for non-terminal, X, look at the FIRST of
each choice and take it if the next input symbol is in it. ..

e ...and if aright-hand side’'s FIRST set contains ¢, take it if the next
input symbol is in FOLLOW(X).

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 8

Grammar Problems ITII

What actions?

p =e '’
e ::=t et {: 71 :}
et ::= ¢ {: 72 :}
| 2/ e {: 7?3 :}
| 7%’ e {: 74 :}
t = T:i1 {: RESULT = i1; :}

What are FIRST and FOLLOW?

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 9

What actions?

p =ea_|)
e ::= 1 et
et ::= €
| J/Je
|J*Je
t = 1:11

What are FIRST and FOLLOW?

Last modified: Tue Feb 5 17:11:49 2019

Grammar Problems ITII

A A A A A

. 71 ¢
. 72 ¢
. 73 :
. 74
: RESULT = i1; :}

o e o

D}

Here, we don't have the previous
problems, but how do we build a
tree that associates properly (left
to right), so that we don't interpret
I1/1/Iasif itwereI/(I/1)?

CS164: Lecture #7 9

Grammar Problems ITII

What actions?

p = e '

e ::= t et {

et ::= € {
| 2/’ e {
| ’%’ e {

t = I:i1 {

What are FIRST and FOLLOW?

. 71 ¢
. 72 ¢
. 73 :
. 74
: RESULT = i1; :}

o e o

D}

Here, we don't have the previous
problems, but how do we build a
tree that associates properly (left
to right), so that we don't interpret
I/1/I1asif itwereI/(I/I)?

FIRST(p) = FIRST(e) = FIRST(t) ={ I }

FIRST(et) =€, ’/7, %’ }

FIRST(’/? e) =4 */’ }
FIRST(’x’ e) = { ’*’ }
FOLLOW(e) = { *-” }
FOLLOW(et) = FOLLOW(e)
FOLLOW(t) = { >H°, */7,

Last modified: Tue Feb 5 17:11:49 2019

)% }

(when to use 73)
(when to use 74)

(when to use 72)

CS164: Lecture #7 9

Using Loops to Roll Up Recursion

e There are ways to deal with problem in last slide within the pure
framework, but why bother?

e Implement e procedure with a loop, instead:

def e():

while
if

else:

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

e There are ways to deal with problem in last slide within the pure
framework, but why bother?

e Implement e procedure with a loop, instead:

def e():
r =t0

while

1f

else:

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

e There are ways to deal with problem in last slide within the pure
framework, but why bother?

e Implement e procedure with a loop, instead:

def e():
r =t0
while next() in [’/?, ’*’]:
1f

else:

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

e There are ways to deal with problem in last slide within the pure
framework, but why bother?

e Implement e procedure with a loop, instead:

def e():
r =t0
while next() in [’/?, ’*’]:
if next() == ?/’:
scan(’/’); t1 = t()
r = makeTree (DIV, r, t1)
else:
return _

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

e There are ways to deal with problem in last slide within the pure
framework, but why bother?

e Implement e procedure with a loop, instead:

def e():
r =t0
while next() in [’/?, ’*’]:
if next() == ?/’:
scan(’/’); t1 = t()
r = makeTree (DIV, r, t1)
else:
scan(’*’); t1 = t()
r = makeTree (MULT, r, t1)
return _

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

e There are ways to deal with problem in last slide within the pure
framework, but why bother?

e Implement e procedure with a loop, instead:

def e():
r =t0
while next() in [’/?, ’*’]:
if next() == ?/’:
scan(’/’); t1 = t()
r = makeTree (DIV, r, t1)
else:
scan(’*’); t1 = t()
r = makeTree (MULT, r, t1)
return r

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

From Recursive Descent to Table Driven

e Our recursive descent parsers have a very regular structure.

Definition of nonterminal A: Program for A:

A ::= oy def AQ):

| o if next() in Sy:

| translation of o

| as elif next() in Sy:
translation of oo

e Here,

FIRST(O&Z), lf € € FIRST(O&Z)

% = | FIRST(ax) U FOLLOW(A), otherwise.

e and the translation of «; simply converts each nonterminal into a call

and each terminal into a scan.

e If the S; do not overlap, we say the grammar is LL(1): input can be
processed from |Left to right, producing a|Lleftmost derivation, and

checking 1] symbol of input ahead to see which branch to take.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 11

Table-Driven LL(1)

e Because of this regular structure, we can represent the program
as a table, and can write a general LL(1) parser that interprets any
such table.

e Consider a previous example:

Grammar
1. prog = sexp '’
2. sexp - atom Lookahead symbol
3. | »(’ elist ’)’ Nonterminal| () > SYM NUM STRING A
4. | "\’ sexp prog (1) n @O @ (1
5. elist ::= € sexp (3) 4) () (2) (2)
6. | sexp elist elist (6) (3) (6) (6) (6) (6) (5)
7. atom = SYM atom (7) (8) 9)
8. | NUM
9. | STRING

e The table shows nonterminal symbols in the left column and the
other columns show which production to use for each possible looka-
head symbol.

e Grammar is LL(1) when this table has at most one production per
entry.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 12

A General LL(1) Algorithm

Given a fixed table T" and grammar G, the function LLparse(X), where
parameter X is a grammar symbol, may be defined

def LLparse(X):

if X 1s a terminal symbol:
scan(X)

else:
prod = T[X] [next()]
Let pip2---p, be the right-hand side of production prod
for i in range(n):

LLparse (p;)

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 13

	Lecture 6: Top-Down Parsing
	Beating Grammars into Programs
	Example: Lisp Expression Recognizer
	Expression Recognizer with Actions
	Grammar Problems I
	Grammar Problems II
	FIRST and FOLLOW
	Using FIRST and FOLLOW
	Grammar Problems III
	Using Loops to Roll Up Recursion
	From Recursive Descent to Table Driven
	Table-Driven LL(1)
	A General LL(1) Algorithm

