Lecture 6: Top-Down Parsing

Last modified: Tue Feb 5 17:11:49 2019

CS164: Lecture #7 1

Beating Grammars into Programs

e A BNF grammar looks like a recursive program. Sometimes it works
to treat it that way.

e Assume the existence of
- A function 'next’ that returns the syntactic category of the next
token (without side-effects);

- A function 'scan(C) that checks that the next syntactic category
is C and then reads another token into next(). Returns the previ-
ous value of next().

- A function ERROR for reporting errors.

e Strategy: Translate each nonterminal, A, into a function that reads
an A according to one of its productions and returns the semantic
value computed by the corresponding action.

e Result is a recursive-descent parser.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 2

Example: Lisp Expression Recognizer

6Grammar

1:= sexp
= atom
| °(’ elist ’)°
|)\:; sexp

elist ::= €
| sexp elist

= SYM
| NUM
| STRING

atom ::

Last modified: Tue Feb 5 17:11:49 2019

def prog ():
sexp(); scan(-)

def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif next() == (:
scan(’ (’); elist(); scan(’)’)
else:
scan(’\’’); sexp()

def atom ():
if next() in [SYM, NUM, STRING]:
scan(next())
else:
ERROR ()

def elist (O:

if next() in [SYM, NUM, STRING, ’(’,

n)n] .

sexp(); elist();

C5164: Lecture #7 3

Expression Recognizer with Actions

e Can make the nonterminal functions return semantic values.

e Assume lexer somehow supplies semantic values for tokens, if needed

elist ::= ¢ {: RESULT = emptyList; :}
| sexp:head elist:tail {: RESULT = cons(head, tail);

def elist ():

if next() in [SYM, NUM, STRING, ’(’, "’"]:

else:
return emptyList

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 4

Expression Recognizer with Actions

e Can make the nonterminal functions return semantic values.

e Assume lexer somehow supplies semantic values for tokens, i

elist ::= € {: RESULT = emptyLis
| sexp:head elist:tail {: RESULT = cons(hea

def elist ():
if next() in [SYM, NUM, STRING, ’(’>, "’"]:
vl = sexp(); v2 = elist(); return cons(vl,v2)
else:
return emptyList

Last modified: Tue Feb 5 17:11:49 2019 CSl164: |

Grammar Problems I

In a recursive-descent parser, what goes wrong here?

p i:i=e P
1= trtl

| e:1ft ’/’ t:rgt {: RESULT

| e:1ft ’*’ t:rgt {: RESULT

{: RESULT = t1; :}
makeTree(DIV, 1ft, rgt);
makeTree (MULT, 1ft, rgt);

If we choose the second of third alternative for e, we'll get an infinite
recursion. If we choose the first, we'll miss '/' and '+’ cases.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 5

:}

}

Grammar Problems II

Well then: What goes wrong here?
p i:i=e P
= trtl

| t:1ft °/’ e:rgt {: RESULT

| t:1ft ’*’ e:rgt {: RESULT

{: RESULT = t1; :}
makeTree(DIV, 1ft, rgt);
makeTree (MULT, 1ft, rgt);

No infinite recursion, but we still don't know which right-hand side to
choose for e.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 6

:}

FIRST and FOLLOW

e If a is any string of terminals and nonterminals (like the right side
of a production) then FIRST(«) is the set of terminal symbols that
start some string that o produces, plus € if a can produce the empty
string. For example:

= e 0

=8 t

= € | 140 |)

= ID | 2C e 7))
Sincee = st = (e) = ..., weknow that '(" € FIRST(e).
Since s = ¢, we know that ¢ € FIRST(s).

e If X is anon-terminal symbol in some grammar, G, then FOLLOW(X)
is the set of terminal symbols that can come immediately after X
in some sentential form that G can produce. For example, since p
= ed = std= s’Ce’) 4 = ..., we know that
‘(' € FOLLOW(s).

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 7

Using FIRST and FOLLOW

e In a recursive-descent compiler where we have a choice of right-
hand sides to produce for non-terminal, X, look at the FIRST of
each choice and take it if the next input symbol is in it...

e ...and if aright-hand side’'s FIRST set contains ¢, take it if the next
input symbol is in FOLLOW(X).

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 8

6rammar Problems ITI Using Loops to Roll Up Recursion

What actions? e There are ways to deal with problem in last slide within the pure
framework, but why bother?

e '’ Here, we don't have the previous
t et . 71 :} problems, but how do we build a
p . 72 :} tree that associates properly (left
1/ e . 23 :} toright), so that we don't interpret

e Implement e procedure with a loop, instead:

def e():
r=1t0

1x7 @ . 74 :} I/I/IasifitwereI/(1/1)?
I:i1 : RESULT = il1; :}

What are FIRST and FOLLOW?

FIRST(p) = FIRST(e) = FIRST(t) = { I }
FIRST(et) = { ¢, ?/’, %> }
FIRST(’/? e) = { /" }
FIRST(’*> e) = { ’%’ }
FOLLOW(e) = { *+> }
FOLLOW(et) = FOLLOW(e) (when to use 72)
FOLLOW(t) = { -, */’, **x> }

(when to use 73)
(when to use 74)

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 9

while next() in [’/’, ’*’]:
if next(Q) == ’/’:
scan(’/’); t1 = t(Q)
r = makeTree (DIV, r, t1)
else:
scan(C’*’); t1 = t(Q)
r = makeTree (MULT, r, t1)
return r

Last modified: Tue Feb 5 17:11:49 2019 C5164: Lecture #7 10

From Recursive Descent to Table Driven

e Our recursive descent parsers have a very regular structure.

Definition of nonterminal A:

A= oy def AQ):
| an if next() in Si:
|
| as

Program for A:

translation of «;
elif next() in S:
translation of o

FIRST(wv,), if e Z FIRST ()

5= | FIRST(a) U FOLLOW/(A), otherwise.

¢ and the translation of «; simply converts each nonterminal into a call
and each terminal into a scan.

e If the S; do not overlap, we say the grammar is LL(1): input can be
processed from Lleft to right, producing a|Lleftmost derivation, and
checking |1/ symbol of input ahead to see which branch to take.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 11

Table-Driven LL(1)

e Because of this regular structure, we can represent the program
as a table, and can write a general LL(1) parser that interprets any
such table.

e Consider a previous example:
6rammar
1. prog ::= sexp ’I
2. sexp atom Lookahead symbol
3.

»(7 elist ’)’ Nonterminal| () > SYM NUM STRING -

|
| *\"> sexp prog M o o @ M
= e sexp |(3) @ @ @ (2)
. | sexp elist elist (6) (B (6) (6) (6) (6)
7. = SYM atom @ &)
8. | NUM
9. STRING
e The table shows nonterminal symbols in the left column and the
other columns show which production to use for each possible looka-
head symbol.

e Grammar is LL(1) when this table has at most one production per
entry.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 12

®)

A General LL(1) Algorithm

Given a fixed table 7" and grammar G, the function LLparse(X), where
parameter X is a grammar symbol, may be defined

def LLparse(X):

if X is a terminal symbol:
scan(X)

else:
prod = T[X] [next ()]
Let pip2---p, be the right-hand side of production prod
for i in range(n):

LLparse(p;)

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 13

	Lecture 6: Top-Down Parsing
	Beating Grammars into Programs
	Example: Lisp Expression Recognizer
	Expression Recognizer with Actions
	Grammar Problems I
	Grammar Problems II
	FIRST and FOLLOW
	Using FIRST and FOLLOW
	Grammar Problems III
	Using Loops to Roll Up Recursion
	From Recursive Descent to Table Driven
	Table-Driven LL(1)
	A General LL(1) Algorithm

