Lecture 39: Program Verification

Announcements.

- Come to class on Friday to fill out the course survey with the help of HKN, and get extra credit.
- Please edit (or add) responses to the team egistration page (see Piazza). Currently, there's lots of missing/erroneous date there, which interferes with getting you access to grading logs.

Extending Static Semantics

- Project 2 considered selected static properties of programs, both of which assisted in translating the program.
- Scope analysis figured out what identifiers meant.
- Type analysis figured out what representations to use for certain data.
- But type analysis served the additional function of discovering certain inconsistencies in a program before execution.
- These are not the only error-finding analyses possible before program execution.
- The subject of program verification considers the internal consistency of more general static properties of programs.
- The study of formal program verification began in the 1960s.

Basic Goal

- The idea is to detect errors in programs before execution and thus to increase our confidence in our programs' correctness.
- Here, "error" is potentially much broader than it was in Project 2, and includes such things as failing to conform to a specification of what the program is intended to do.
- Today, we'll take an introductory look at one technique for this purpose, known as axiomatic semantics.
- Here, we are interested in statements of the form

$$
\{P\} \mathcal{S}(Q\}
$$

where P and Q are assertions about the program statement and \mathcal{S} is a piece of program text.

- This statement means "If P is true just before statement \mathcal{S} is executed and \mathcal{S} terminates, then at that point Q will be true."
- It asserts the weak correctness of \mathcal{S} with respect to precondition P and postcondition Q.
- Strong correctness is the same, but also requires that \mathcal{S} terminate.

Weakest Liberal Preconditions

- In order for

$$
\{P\} \mathcal{S}(Q\}
$$

to be true, it suffices to show that $P \Longrightarrow ?(\llbracket \mathcal{S} \rrbracket, Q)$. That is, P implies some logical assertion that depends on \mathcal{S} and Q.

- The usual name for '?' is wlp, for weakest liberal precondition.
- Here, the term "weakest" means "least restrictive" or "most general", and "liberal" refers to the fact that this precondition need not guarantee termination of S.
- Another notation, wp $(\llbracket \mathcal{S} \rrbracket, Q)$, or weakest precondition, is a bit stronger than the wlp; it implies both the wlp and termination of \mathcal{S}.
- We call wlp and wp predicate transformers, because they transform the logical expression Q into another logical expression.
- By defining wlp or wp for all statements in a language, we effectively define the dynamic semantics of the language.

Examples of Predicate Transformations (I)

- We start with the most obvious:

$$
\mathbf{w l p}(\llbracket p \mathrm{pass} \rrbracket, Q) \equiv Q
$$

- That is, the least restrictive condition that guarantees that Q is true after executing pass in Python is Q itself.
- Since pass always terminates, in this case

$$
\boldsymbol{w p}(\llbracket \mathrm{pass} \rrbracket, Q) \equiv Q
$$

as well.

- Sequencing is also easy:

$$
\mathrm{w} \operatorname{lp}\left(\llbracket \mathcal{S}_{1} ; \mathcal{S}_{2} \rrbracket, Q\right) \equiv \mathrm{w} \operatorname{lp}\left(\llbracket \mathcal{S}_{1} \rrbracket, \mathrm{w} \operatorname{lp}\left(\llbracket \mathcal{S}_{2} \rrbracket, Q\right)\right)
$$

or basically composition of wip.

Examples of Predicate Transformations (II)

- If-then-else results in essentially a case analysis:

$$
\equiv \begin{aligned}
& \quad \begin{array}{c}
\mathbf{p} \mathbf{p}\left(\llbracket \text { if } C \text { then } S_{1} \text { else } S_{2} \mathbf{f i}, Q\right) \\
\left(C \Longrightarrow \mathrm{w} \operatorname{lp}\left(\llbracket S_{1} \rrbracket, Q\right)\right) \wedge\left(\neg C \Longrightarrow \mathrm{w} \operatorname{p}\left(\llbracket S_{2} \rrbracket, Q\right)\right)
\end{array}
\end{aligned}
$$

- Or
"The weakest liberal precondition insuring that Q is true after if C then S_{1} else $S_{2} \mathbf{f i}$ is that C being true must ensure that Q will be true after S_{1} and that C being false must ensure that Q is true after executing S_{2}."
- I am playing a bit fast and loose with notation here. The expression C is in the programming language, whereas Q is in whatever assertion language we are using to talk about programs written in that language.
- For the purposes of this lecture, we'll ignore the problems that can arise here.
- Similarly, assume C and other expressions have no side-effects.

Examples of Predicate Transformations (III)

- Assignment starts to get interesting.
- After executing $X=E$, of course, X will have value E had before the assignment.
- So for Q to be true after the assignment, it must have been true before as well, if we substitute the value of E for X.
- Formally,

$$
\mathbf{w} \mathbf{p}(\llbracket \mathrm{X}=E \rrbracket, Q) \equiv Q[E / \mathrm{X}]
$$

where the notation $A[\alpha / \beta]$ means "the logical expression A with all (free) instances of β replaced by α."

- For example,

$$
\mathbf{w l p}(\llbracket \mathrm{X}=\mathrm{X}+1 \rrbracket, X>2) \equiv(X+1)>2
$$

Examples of Predicate Transformations (IV)

- The predicate transformations we've seen so far can all be done completely mechanically by operations on the ASTs representing the ststements and assertions (for example).
- The same could be done for while, but would require extending the logical language used for assertions for every while statement in the program. For various reasons, that is undesirable.
- So usually, finding the wlp for while statements requires a little inventing from the programmer, in the form of a loop invariant.
- A loop invariant is an assertion at the beginning of the loop.
- The invariant assertion is intended to be true whenever the program is just about to (re)check the conditional test of the loop.

Rule for While Loops

- If we let the label W stand for the while statement

```
while }C\mathrm{ do }S\mathrm{ od
```

and let I_{w} stand for the (alleged) loop invariant the programmer provides for this loop, we get the simple rule:

$$
\mathbf{w} \operatorname{lp}(\llbracket W \rrbracket, Q) \equiv I_{w}
$$

assuming we can prove that I_{w} really is a loop invariant: that is,

$$
\left(C \wedge I_{w} \Longrightarrow \mathbf{w} \operatorname{lp}\left(\llbracket S \rrbracket, I_{w}\right)\right) \wedge\left(\neg C \wedge I_{w} \Longrightarrow Q\right)
$$

- This makes sense, because it means that
(a) if I_{w} is true as a precondition of the loop, and
(b) if whenever I_{w} and the loop condition are true, executing the loop body maintains I_{w} (hence the name "invariant"), and finally
(c) if I_{w} is true and the loop condition C becomes false so that the loop exits, then Q must be true.

Example

- Consider an annotated program for computing x^{n} :

```
\(\{n \geq 0 \wedge x>0\) \}
\(\mathrm{k}=\mathrm{n} ; \mathrm{z}=\mathrm{x} ; \mathrm{y}=1\);
while k > 0 do
    \{ Invariant: \(\left.y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0\right\}\)
    if odd (k) then \(\mathrm{y}=\mathrm{y} * \mathrm{z}\); fi
    z = z * z;
    k = k // 2;
od
\{ \(\left.y=x^{n}\right\}\)
```

- So the wlp of the loop is (proposed to be) $y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0$.
- And therefore, the wlp of the whole program is

$$
1 \cdot x^{n}=x^{n} \wedge x>0 \wedge n \geq 0
$$

(apply the assignment rule three times).

- This is obviously implied by $n \geq 0 \wedge x>0$. So far, so good.

Example, Correctness at Termination

```
{ n\geq0^x>0 }
k = n; z = x; y = 1;
while k > 0 do
    { Invariant: y f z
    if odd(k) then y = y * z; fi
    z = z * z;
    k = k // 2;
od
{ y= x n }
```

- Now we need to show that the loop invariant really does imply Q (in this case, $y=x^{n}$) when the loop ends. In other words:

$$
k \leq 0 \wedge y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0 \Longrightarrow y=x^{n}
$$

But since the left side of the implication means that k must be 0 , this too is obvious.

Example: Invariant (I)

```
{ n\geq0^x>0 }
k = n; z = x; y = 1;
while k > 0 do
    { Invariant: y f z
    if odd(k) then y = y * z; fi
    z = z * z;
    k = k // 2;
od
{ y=\mp@subsup{x}{}{n}}
```

- This leaves just the invariance of the alleged invariant to show:
$k>0 \wedge y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0 \Longrightarrow \mathbf{w} \operatorname{lp}\left(\llbracket S \rrbracket, y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0\right)$
where S is the body of the loop.
- This simplifies to

$$
y \cdot z^{k}=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \mathbf{w} \operatorname{lp}\left(\llbracket S \rrbracket, y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0\right)
$$

Example: Invariant (II)

```
\(\{n \geq 0 \wedge x>0 \quad\}\)
\(\mathrm{k}=\mathrm{n} ; \mathrm{z}=\mathrm{x} ; \mathrm{y}=1\);
while k > 0 do
    \(\left\{\right.\) Invariant: \(\left.y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0\right\}\)
    if odd(k) then \(y=y * z ; f i\)
    z = z * z;
    k = k // 2;
od
\(\left\{y=x^{n}\right\}\)
```

- From

$$
y \cdot z^{k}=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \mathbf{w} \operatorname{lp}\left(\llbracket S \rrbracket, y \cdot z^{k}=x^{n} \wedge z>0 \wedge k \geq 0\right)
$$

we get

$$
y \cdot z^{k}=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \mathbf{w l p}\left(\llbracket \mathrm{if} \ldots \mathrm{fi}, y \cdot\left(z^{2}\right)^{\lfloor k / 2\rfloor}=x^{n} \wedge z^{2}>0 \wedge\lfloor k / 2\rfloor \geq 0\right)
$$

or
$y \cdot z^{k}=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \mathbf{w l p}\left(\llbracket i f \ldots\right.$. fi】, $\left.y \cdot z^{2\lfloor k / 2\rfloor}=x^{n} \wedge z^{2}>0 \wedge\lfloor k / 2\rfloor \geq 0\right)$

Example: Invariant (III)

```
{ n\geq0^x>0 }
k = n; z = x; y = 1;
while k > 0 do
    { Invariant: y f z
    if odd(k) then y = y * z; fi
    z = z * z;
    k = k // 2;
od
{ y= 秋 }
```

- Finally, the conditional:

$$
y \cdot z^{k}=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \mathbf{w} \mathbf{l p}\left(\llbracket \mathrm{if} . . . \mathrm{fi} \mathrm{\rrbracket}, y \cdot z^{2\lfloor k / 2\rfloor}=x^{n} \wedge z^{2}>0 \wedge\lfloor k / 2\rfloor \geq 0\right)
$$

becomes

$$
\begin{aligned}
y \cdot z^{k} & =x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \\
& \neg \operatorname{odd}(k) \Longrightarrow y \cdot z^{2\lfloor k / 2\rfloor}=x^{n} \wedge z^{2}>0 \wedge\lfloor k / 2\rfloor \geq 0 \\
& \wedge \operatorname{odd}(k) \Longrightarrow y \cdot z \cdot z^{2\lfloor k / 2\rfloor}=x^{n} \wedge z^{2}>0 \wedge\lfloor k / 2\rfloor \geq 0
\end{aligned}
$$

Example: Invariant (IV)

```
{ n\geq0^x>0 }
k = n; z = x; y = 1;
while k > 0 do
    { Invariant: y f z
    if odd(k) then y = y * z; fi
    z = z * z;
    k = k // 2;
od
{ y= x n }
```

- And we are left to check:

$$
\begin{aligned}
& y \cdot z^{k}=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \\
& \quad \neg \operatorname{odd}(k) \Longrightarrow y \cdot z^{2\lfloor k / 2\rfloor}=x^{n} \wedge z^{2}>0 \wedge\lfloor k / 2\rfloor \geq 0 \\
& \quad \wedge \operatorname{odd}(k) \Longrightarrow y \cdot z \cdot z^{2\lfloor k / 2\rfloor}=x^{n} \wedge z^{2}>0 \wedge\lfloor k / 2\rfloor \geq 0 \\
& y \cdot z^{k} \quad=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow \\
& \quad \neg \operatorname{odd}(k) \Longrightarrow y \cdot z^{k}=x^{n} \\
& \quad \wedge \operatorname{odd}(k) \Longrightarrow y \cdot z^{k}=x^{n} \\
& y \cdot z^{k}=x^{n} \wedge z>0 \wedge k>0 \Longrightarrow y \cdot z^{k}=x^{n}
\end{aligned}
$$

- which is obvious.

Termination

- We actually have the tools to find the "strong" version of wip (also implying termination):

$$
\mathbf{w p}(S, Q) \equiv \mathbf{w} \operatorname{lp}(S, Q) \wedge \neg \mathbf{w} \operatorname{lp}(S, \text { false })
$$

- (Huh? Why does this work?)
- More usual technique is to use variant expressions in the important places (like loops):

```
while C do
    {e= eo }
    S
        {e<e e }
```

where e is an expression whose value is in a well-founded set (such as the non-negative integers), where all descending sequences of values must have finite length.

Limitations

- Even this small example involves a lot of tedious detail.
- Machine assistance helps "reduce" the problem to logic, but for general programs the resulting assertions are at best challenging for current theorem-proving techniques.
- Furthermore, it is tedious and error-prone to come up with formal specifications (pre- and post-conditions and invariants) for even moderately sized programs.
- Consider, for example, that our rules ignored the possibility of integer overflow (i.e., treated computer integer arithmetic as if it were on the mathematical integers.)
- Nevertheless, some applications (like safety-critical software) warrant such efforts.
- But for general programs, the verification enterprise fell out of favor in the 1980s.

Rebirth

- However, by limiting our objectives, there are numerous uses for the machinery described here.
- For example, there are certain program properties that are useful to verify:
- Is this array index always in bounds here?
- Is this pointer always non-null here?
- Does this concurrent program ever deadlock?
- Thus a compiler could (in effect) insert assertions in front of certain statements:

$$
\begin{aligned}
& \{i \geq 0 \wedge i<A \text {. length }\} \\
& \mathrm{A}[\mathrm{i}]=\mathrm{E} \text {; }
\end{aligned}
$$

And then verify a piece of the program to show the assertions are always true.

- Not only shows the program does not cause exceptions, but allows the compiler to avoid generating code to check the value of i.

