Lecture #30: Operational Semantics, Part III

Last modified: Wed Apr 10 14:50:13 2019

Classes and Functions as Values

- Although the language does not allow programmers to treat classes as first-class values, the semantics is free to do so.
- ullet Thus, we represent a class T with attributes a_1,\ldots a

$$class(T) = (a_1 = e_1, \dots, a_m = e_m)$$

- ullet Here, the e_i are either literal expressions or function definitions.
- Similarly, the semantics associates a function value with each function, even though programmers cannot manipulate functions as values:

$$v = (x_1, \dots, x_n, y_1 = e_1, \dots, y_k = e_k, b_{body}, E_f)$$

ullet Here, the x_i are parameter names and the y_i are the local variables (with initializers e_i .)

Function Invocation

Now things get complicated:

$$S_0(E(f)) = (x_1, \dots, x_n, y_1 = e'_1, \dots, y_k = e'_k, b_{body}, E_f) \quad \text{Evaluate Function} \\ n, k \geq 0 \\ G, E, S_0 \vdash e_1 : v_1, S_1, \bot \quad \text{Evaluate Actuals} \\ \vdots \\ G, E, S_{n-1} \vdash e_n : v_n, S_n, \bot \\ \hline l_{x1}, \dots, l_{xn}, l_{y1}, \dots, l_{yk} = newloc(S_n, n+k) \\ E' = E_f[l_{x1}/x_1] \dots [l_{xn}/x_n][l_{y1}/y_1] \dots [l_{yk}/y_k] \quad \text{Parameters and Locals} \\ G, E', S_n \vdash e'_1 : v'_1, S_n, \bot \\ \vdots \\ G, E', S_n \vdash e'_k : v'_k, S_n, \bot \\ \hline S_{n+1} = S_n[v_1/l_{x1}] \dots [v_n/l_{xn}][v'_1/l_{y1}] \dots [v'_k/l_{yk}] \quad \text{Assign Params. and Locals} \\ G, E', S_{n+1} \vdash b_{body} : \bot, S_{n+2}, R \quad \text{Evaluate Body} \\ R' = \begin{cases} None, \text{ if } R \text{ is } \bot \\ R, \text{ otherwise} \end{cases} \quad \text{And Capture Return Value} \\ \hline G, E, S_0 \vdash f(e_1, \dots, e_n) : R', S_{n+2}, \bot \quad \text{[INVOKE]} \end{cases}$$

Function Invocation: Discussion

• In the rules for evaluating local definitions:

$$G, E', S_n \vdash e'_1 : v'_1, S_n, _$$
 \vdots
 $G, E', S_n \vdash e'_k : v'_k, S_n, _$

Why does the state remain S_n ?

 What would happen if we changed the steps for allocating new variables to

$$G, E, S_n \vdash e'_1 : v'_1, S_n, _$$
 \vdots
 $G, E, S_n \vdash e'_k : v'_k, S_n, _$

Fvaluate Initializers

$$l_{x1},\ldots,l_{xn},l_{y1},\ldots,l_{yk}=newloc(S_n,n+k)$$
 Allocate New Locations for $E'=E_f[l_{x1}/x_1]\ldots[l_{xn}/x_n][l_{y1}/y_1]\ldots[l_{yk}/y_k]$ Parameters and Locals

?

Function Invocation: Discussion

• In the rules for evaluating local definitions:

$$G, E', S_n \vdash e'_1 : v'_1, S_n, _$$
 \vdots
 $G, E', S_n \vdash e'_k : v'_k, S_n, _$

Why does the state remain S_n ? The e'_i must all be literals or function definitions, whose evaluation does not change the state.

What would happen if we changed the steps for allocating new variables to

$$G, E, S_n \vdash e_1' : v_1', S_n, _$$
 \vdots
 $Evaluate Initializers$
 $G, E, S_n \vdash e_k' : v_k', S_n, _$

 $G, E, S_n \vdash e_k' : v_k', S_n,$ $L_{x_1}, \ldots, l_{x_n}, l_{y_1}, \ldots, l_{y_k} = newloc(S_n, n+k)$ Allocate New Locations for $E' = E_f[l_{x_1}/x_1] \ldots [l_{x_n}/x_n][l_{y_1}/y_1] \ldots [l_{y_k}/y_k]$ Parameters and Locals

?

Function Invocation: Discussion

• In the rules for evaluating local definitions:

$$G, E', S_n \vdash e'_1 : v'_1, S_n, _$$
 \vdots
 $G, E', S_n \vdash e'_k : v'_k, S_n, _$

Why does the state remain S_n ? The e'_i must all be literals or function definitions, whose evaluation does not change the state.

 What would happen if we changed the steps for allocating new variables to

$$G, E, S_n \vdash e_1' : v_1', S_n, _$$
 \vdots
 $Evaluate Initializers$
 $G, E, S_n \vdash e_k' : v_k', S_n, _$

 $\frac{G,E,S_n\vdash e_k':v_k',S_n,_}{l_{x1},\ldots,l_{xn},l_{y1},\ldots,l_{yk}=newloc(S_n,n+k)} \quad \text{Allocate New Locations for}$ $E'=E_f[l_{x1}/x_1]\dots[l_{xn}/x_n][l_{y1}/y_1]\dots[l_{yk}/y_k]$ Parameters and Locals

? Nothing. The effect is the same.

Function Invocation: Discussion (II)

Consider the lines:

$$S_0(E(f)) = (x_1, \dots, x_n, y_1 = e'_1, \dots, y_k = e'_k, b_{body}, E_f) \quad \text{Evaluate Function}$$

$$\vdots$$

$$E' = E_f[l_{x1}/x_1] \dots [l_{xn}/x_n][l_{y1}/y_1] \dots [l_{yk}/y_k] \quad \text{Parameters and Locals}$$

$$\vdots$$

$$G, E', S_{n+1} \vdash b_{body} : _, S_{n+2}, R \quad \text{Evaluate Body} :$$

$$G, E, S_0 \vdash f(e_1, \dots, e_n) : R', S_{n+2},$$
 [INVOKE]

- \bullet The environment for evaluating the body, E', is **not** an extension of E, but rather of E_f , the environment that is part of the function's value.
- This is in keeping with the rule you first saw in CS61A: a function value's parent frame is the one in which the function definition is evalated, not the one in which the call is evaluated.

Method Dispatching

Method dispatching, as in x.f(3), is unsurprisingly close to function invocation.

$$G,E,S \vdash e_0: v_0,S_0, _$$
 Evaluate Object
$$v_0 = X(a_1 = l_1, \ldots, f = l_f, \ldots, a_m = l_m)$$
 Find f in Class Value
$$S_0(l_f) = (x_0,x_1,\ldots,x_n,y_1 = e'_1,\ldots,y_k = e'_k,b_{body},E_f)$$

$$\underline{... \textit{Evaluate Parameters as for Function Calls}...}$$

$$l_{x_0}, l_{x_1},\ldots, l_{x_n}, l_{y_1},\ldots, l_{y_k} = newloc(S_n,n+k+1)$$

$$E' = E_f[l_{x_0}/x_0]\ldots[l_{x_n}/x_n][l_{y_1}/y_1]\ldots[l_{y_k}/y_k]$$

$$\underline{... \textit{Evaluate Initializers for Locals}}$$

$$as \textit{for Function Calls}...$$

$$S_{n+1} = S_n[v_0/l_{x_0}]\ldots[v_n/l_{x_n}][v'_1/l_{y_1}]\ldots[v'_k/l_{y_k}]$$
 Assign Params. and Locals
$$G,E',S_{n+1} \vdash b_{body}: _,S_{n+2},R$$
 Evaluate Body
$$R' = \begin{cases} None, & \text{if } R \text{ is } _\\ R, \text{ otherwise} \end{cases}$$
 And Capture Return Value
$$G,E,S \vdash e_0.f(e_1,\ldots,e_n): R',S_{n+2},_$$
 [DISPATCH]

Function Definitions

- Function definitions provide values for local definitions (nested functions) and global functions.
- In the [INVOKE] and [DISPATCH] rules, these values then get assigned to the local names (denoted y_i in those rules).

$$g_1,\ldots,g_L: \text{ variables declared with 'global' in } f$$

$$y_1=e_1,\ldots,y_k=e_k: \text{ local variables and functions in } f$$

$$E_f=E[G(g_1)/g_1]\ldots[G(g_L)/g_L]$$

$$v=(x_1,\ldots,x_n,y_1=e_1,\ldots,y_k=e_k,b_{body},E_f)$$

$$G,E,S\vdash \text{def } f(x_1{:}T_1,\ldots,x_n{:}T_n)\text{ $[->T_0]$}^?:b:v,S,_$$
 [FUNC-METHOD-DEF]

ullet This is where we capture the parent local environment, E, in which f is defined.

Native Functions

- Certain functions are predefined (print, len, input), and do not have normal bodies.
- For these, we denote the function bodies as, e.g., native len and define special rules for these particular bodies.
- Assume that the native bodies expect a parameter named val (if they have one).
- Then we can define, e.g.,

$$S(E(\mathtt{val})) = v$$

$$v = int(i) \text{ or } v = bool(b) \text{ or } v = str(n, s)$$

$$G, E, S \vdash \mathtt{native print} : _, S, None$$

$$S(E(\mathtt{val})) = v$$

$$v = [l_1, l_2, \dots, l_n]$$

$$n \ge 0$$

$$G, E, S \vdash \mathtt{native len} : _, S, int(n)$$
[LEN-LIST]

and others.

Accessing Attributes of Classes

The notation from the first slide provides us with a description of a value and its attributes:

$$G, E, S_0 \vdash e : v_1, S_1, -$$

$$v_1 = X(a_1 = l_1, \dots, id = l_{id}, \dots, a_m = l_m)$$

$$v_2 = S_1(l_{id})$$

$$G, E, S_0 \vdash e.id : v_2, S_1, -$$
[ATTR-READ]

$$G, E, S_0 \vdash e_2 : v_r, S_1, _$$
 $G, E, S_1 \vdash e_1 : v_l, S_2, _$
 $v_l = X(a_1 = l_1, \dots, id = l_{id}, \dots, a_m = l_m)$

$$S_3 = S_2[v_r/l_{id}]$$
 $G, E, S_0 \vdash e_1.id = e_2 : _, S_3, _$
[ATTR-ASSIGN-STMT]

Q: In [ATTR-ASSIGN-STMT], what exactly happens when e_1 or e_2 have side effects?

Accessing Attributes of Classes

The notation from the first slide provides us with a description of a value and its attributes:

$$G, E, S_0 \vdash e : v_1, S_1, _$$

$$v_1 = X(a_1 = l_1, \dots, id = l_{id}, \dots, a_m = l_m)$$

$$v_2 = S_1(l_{id})$$

$$G, E, S_0 \vdash e.id : v_2, S_1, _$$
[ATTR-READ]

$$G, E, S_0 \vdash e_2 : v_r, S_1, _$$
 $G, E, S_1 \vdash e_1 : v_l, S_2, _$
 $v_l = X(a_1 = l_1, \dots, id = l_{id}, \dots, a_m = l_m)$

$$S_3 = S_2[v_r/l_{id}]$$
 $G, E, S_0 \vdash e_1.id = e_2 : _, S_3, _$
[ATTR-ASSIGN-STMT]

Q: In [ATTR-ASSIGN-STMT], what exactly happens when e_1 or e_2 have side effects? A: e_2 is evaluated first, and therefore can affect the evaluation of e_1 , but not vice-versa.

Creating Objects

$$class(T) = (a_1 = e_1, \ldots, a_m = e_m) \qquad T \text{ Must Be A Class} \\ m \geq 1 \\ l_{a1}, \ldots, l_{am} = newloc(S, m) \qquad \text{Allocate Attributes} \\ v_0 = T(a_1 = l_{ai}, \ldots, a_m = l_{am}) \qquad \text{New Object Value} \\ \hline G, G, S \vdash e_1 : v_1, S, _ \\ \vdots \qquad \qquad \vdots \qquad \qquad \text{Evaluate Initializers in } G \\ G, G, S \vdash e_m : v_m, S, _ \\ S_1 = S[v_1/l_{a1}] \ldots [v_m/l_{am}] \qquad \text{Initialize Attributes} \\ \hline l_{init} = l_{ai} \text{ such that } a_i = _\text{init}_ \qquad \text{Get } _\text{init}_ \text{ method} \\ S_1(l_{init}) = (x_0, y_1 = e'_1, \ldots, y_k = e'_k, b_{body}, E_f) \\ k \geq 0 \\ \hline l_{x0}, l_{y1}, \ldots, l_{yk} = newloc(S_1, k+1) \\ E' = E_f[l_{x0}/x_0][l_{y1}/y_1] \ldots [l_{yk}/y_k] \\ G, E, S_1 \vdash e'_1 : v'_1, S_1, _ \\ \vdots \qquad \qquad \qquad \vdots \qquad \qquad \text{Call It On } v_0 \\ G, E, S_1 \vdash e'_k : v'_k, S_1, _ \\ S_2 = S_1[v_0/l_{x0}][v'_1/l_{y1}] \ldots [v'_k/l_{yk}] \\ G, E', S_2 \vdash b_{body} : _, S_3, _ \\ G, E, S \vdash T() : v_0, S_3, _$$

Starting Things Off: Programs

We start with an initial store and environment, containing just the predefined function.

> $g_1 = e_1, \ldots, g_k = e_k$ are the global variable and function definitions in the program P is the sequence of statements in the program

$$l_{g1}, \dots, l_{gk} = newloc(S_{init}, k)$$

$$G = G_{init}[l_{g1}/g_1] \dots [l_{gk}/g_k]$$

$$G, G, S_{init} \vdash e_1 : v_1, S_{init}, \bot$$

$$\vdots$$

$$G, G, \emptyset \vdash e_k : v_k, S_{init}, \bot$$

$$S = S_{init}[v_k/l_{g1}] \dots [v_k/l_{gk}]$$

$$G, G, S \vdash P : \bot, S', \bot$$

$$\emptyset, \emptyset, \emptyset \vdash P : \bot, S', \bot$$
[PROGRAM]

Last modified: Wed Apr 10 14:50:13 2019

Initial Store and Environment

Here, we use the native body notation from previously.

$$G_{init} = \emptyset[l_{len}/len][l_{print}/print][l_{input}/input]$$
 $S_{init}(l_{print}) = (ext{val}, ext{native print}, \emptyset)$ $S_{init}(l_{len}) = (ext{val}, ext{native len}, \emptyset)$ $S_{init}(l_{input}) = (ext{native print}, \emptyset)$