
Answer to Question from Last Lecture

Q: What is an example of an unambiguous, non-LR grammar?
A: There are many, but consider

A ::= /* empty */

| ’x’ A ’x’

| ’y’ A ’y’

;

• This is the language {wwR | w ∈ {x, y}}, where wR is the reverse of
w.

• It is unambiguous, since there is only one derivation for any string
in the language.

• But it is not LR(k) for any k. (How can you see this?)

• In fact, there is no alternative grammar for this language that is
LR(k)!

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 1

Lecture 13: Project 1 Related

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 2

CUP/JFlex interface

• Lexer communicates syntactic categories of tokens as integers.

• These may be defined in the CUP file as symbolic constants (in
terminal declarations).

• They are converted to Java constants in the generated class

chocopy.pa1.ChocoPyTokens

which the lexer can then use.

• The lexer bundles syntactic values, semantic values, and source lo-
cations into objects of type java cup.runtime.Symbol, which it re-
turns to the parser.

• The terminal and non terminal declarations in the CUP file tell
what types of semantic value the declared symbols have: both from
lexical actions (for terminals) and parser actions (nonterminals).

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 3

Lexer Features

• In lexical actions, yytext() is a Java string containing the matched
token, and yylength() is its length.

• Actions that execute return cause the lexer to deliver a token (a
Symbol).

• Actions that don’t return indicate tokens that are skipped.

• It’s always the action of the longest match that gets chosen (or the
first in case of ties). As a result,

"for" { return symbol(ChocoPyTokens.FOR); }

[A-Za-z][A-Za-z0-9]* { return symbol(ChocoPyTokens.IDENTIFIER,

yytext()); }

will return FOR for the input “for” and IDENTIFIER for the input
“forage,” just as is usually intended.

• And in the case of “forage,” the lexer will also include additional
semantic information: the text of the identifier itself.

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 4



Lexer Features: Macros

• You can define abbreviations (“macros”) above the first %% in the
lexer file for use in patterns, as in

ALPHA = [a-zA-Z_]

ALNUM = [a-zA-Z_0-9]

which allows you to write

{ALPHA}{ALNUM}* { rule for ID; }

• Use this to simplify and clarify your actions.

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 5

Lexer Features: Using Java Directly

• The converted JFlex program is a Java program. The actions are
general Java statements. Use this for “special effects”, such as
keeping track of indentation levels.

• The Chocopy lexical structure has been considerably simplified from
Python’s, so that you don’t have to worry about continuation lines.

• However, if you did want to follow full Python’s rules, you’d need to
keep track of when you are in the midst of a bracketed construct
(’(...’, ’[...]’, ’{...}’), because in those cases, newlines be-
have like spaces.

• Expedient solution: keep a bracket count in a variable and test in
the lexical action for "\n" to decide whether to return a NEWLINE
token.

• For indentation, you’ll presumably need some sort of stack to keep
track of valid levels of indentation and deal with them at the begin-
nings of lines.

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 6

Lexer Start States

• The lexer is essentially a DFSA that starts over in some initial state
whenever the lexer’s next_token method is called. You can define
alternative starting states in this DFSA with %state declarations
above the first %%, as in

%state SPECIAL

• This says that patterns or groups of patterns that start with <SPECIAL>

match only when the lexer starts the machine in state SPECIAL, and
in that state, other patterns do not match.

• In actions, one can change the start state for subsequent calls of
the lexer with the call

yybegin(SPECIAL);

to make SPECIAL the start state. Initially, the starting state is
YYINITIAL.

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 7

Example

One way to handle C-style comments might be this:

%state COMMENT

%%

<YYINITIAL> {

rules to use when not in a comment
"/*" { yybegin(COMMENT); /* But don’t return yet. */ }

}

<COMMENT> {

"*/" { yybegin(YYINITIAL); /* Don’t return yet. */ }

[^] { /* Matches any character. We still don’t return. */ }

}

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 8



Indentation and Matching Nothing

• The start-state feature can be useful when implementing INDENT

and DEDENT, but we leave it to you to figure out how.

• You are likely to face one particular problem in addition: If you have
a pattern intended to match indentation, it might have to match
empty indentation (say, at the beginning of the program).

• Unfortunately, JFlex patterns won’t match empty strings.

• Fortunately, there is a kludge useful feature: you can contrive for a
pattern to match too much text and then return excess text to the
lexer to be reprocessed.

• In lexical actions, the call yypuahback(N) will return the last N

matched characters from yytext() to the lexer.

• We leave it to you to see where this might be helpful.

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 9

Parser Points

• Keep semantic actions simple. For the most part, you don’t need
much other than, e.g.,

statement: RETURN:r expr:e {: RESULT = new ReturnStmt(rxleft, exright, e); :}

• Here, rxleft is “the start of the symbol labeled ‘r’ ” and exright is
“the end of the symbol labeled ‘e’ ”.

• Feel free to introduce new supporting functions in the parser code

and action code sections.

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 10

General Advice

• Read the Project Documentation: there actually is useful informa-
tion there!

• Read the Skeleton: it gives some clues and contains work you need
not do.

• Read the Tool Documentation: The manuals for JFlex and CUP are
online.

• Write Test Cases: Yes, there are already some there, but it would
be good to think about how to write such a test suite (and don’t
forget that we are holding back some tests until the deadline).

• Use GIT: Commit often (I have 130 commits just to change the
previous year’s solution to this year’s). Learn how to coordinate with
your partners.

• Meet Regularly With Your Team. Have a clear idea of what every-
one’s job is.

Last modified: Fri Feb 22 14:43:02 2019 CS164: Lecture #13 11


	Answer to Question from Last Lecture
	Lecture 13: Project 1 Related
	CUP/JFlex interface
	Lexer Features
	Lexer Features: Macros
	Lexer Features: Using Java Directly
	Lexer Start States
	Example
	Indentation and Matching Nothing
	Parser Points
	General Advice

