
Lecture 11: Parser Conflicts, Using Ambiguity, Error
Recovery

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 1

LR(1) Parsing and CUP/Bison

• Bison and CUP build the kind of machine in the last lecture.

• However, for efficiency reasons, they collapse many of the states
together, namely those that differ only in lookahead sets, but oth-
erwise have identical sets of items. Result is called an LALR(1)
parser (as opposed to LR(1)).

• Causes some additional conflicts, but these are rare.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 2

LR(1) to LALR(1) Example

• The grammar

p : expr -|

expr : expr ’+’ term | term

term : term ’*’ primary | primary

primary : ID | ’(’ expr ’)’

leads to (among others) two different states:

primary : ’(’ expr ’)’ • / -|, +, *

--

primary : ’(’ expr ’)’ • / +, *, ’)’

• LALR(1) converts these to one state, combining lookaheads:

primary : ’(’ expr ’)’ • / -|, +, *, ’)’

without any problems.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 3

LR(1) to LALR(1) Problematic Example

• Example:

p : ’1’ q ’0’ | ’0’ q ’1’ | ’1’ r ’1’ | ’0’ r ’0’ ;

q : ’x’ ;

r : ’x’ ;

• Here, we get two states for reducing ‘x’:

q : ’x’ • / ’1’ q : ’x’ • / ’0’

r : ’x’ • / ’0’ r : ’x’ • / ’1’

and all is well.

• Almost always, can get away with collapsing these into one state,
combining lookaheads.

• But here, Bison would get a conflict:

q : ’x’ • / ’1’, ’0’

r : ’x’ • / ’0’, ’1’

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 4

Shift/Reduce Conflicts

• If a DFA state contains both [X: α•aβ, b] and [Y: γ•, a], then we
have two choices when the parser gets into that state at the | and
the next input symbol is a:

– Shift into the state containing [X: αa•β, b], or

– Reduce with Y: γ•.

• This is called a shift-reduce conflict.

• Often due to ambiguities in the grammar. Classic example: the dan-
gling else

S ::= "if" E "then" S | "if" E "then" S "else" S | . . .

• This grammar gives rise to a DFA state containing

[S: "if" E "then" S•, "else"] and [S: "if" E "then" S•"else" S, . . .]

• So if “else” is next, we can shift or reduce.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 5

More Shift/Reduce Conflicts

• Consider the ambiguous grammar

E : E + E | E * E | int

• We will have states containing

[E: E + •E, */+] [E: E + E •, */+]

[E: •E + E, */+] E
=⇒ [E: E •+ E, */+]

[E: •E * E, */+] [E: E •* E, */+]
.

• Again we have a shift/reduce conflict on input ’*’ or ’+’ (in the item
set on the right).

• We probably want to shift on ’*’ (which is usually supposed to bind
more tightly than ’+’)

• We probably want to reduce on ’+’ (left-associativity).

• Solution: provide extra information (the precedence of ’*’ and ’+’)
that allows the parser generator to decide what to do.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 6

Using Precedence in Bison/CUP

• In Bison or Horn, you can declare precedence and associativity of
both terminal symbols and rules,

• For terminal symbols (tokens), there are precedence declarations,
listed from lowest to highest precedence:

Bison CUP

%left ’+’ ’-’ precedence left PLUS, SUB;

%left ’*’ ’%’ precedence left MULT, MOD;

%right "**" precedence right EXPO;

Symbols on each such line have the same precedence.

• For a rule, precedence = that of its last terminal (Can override with
%prec if needed, cf. the Bison manual).

• Now, we resolve shift/reduce conflict with a shift if:

– The next input token has higher precedence than the rule, or

– The next input token has the same precedence as the rule and
the relevant precedence declaration was %right.

and otherwise, we choose to reduce the rule.
Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 7

Example of Using Precedence to Solve S/R Conflict (1)

• Assuming we’ve declared

%left PLUS

%left MULT

the rule E ::= E + E will have precedence 1 (left-associative) and the
rule E ::= E * E will have precedence 2.

• So, when the parser confronts the choice in state 6 w/next token
’*’,

5 E: E + •E, */+
E: •E + E, */+
E: •E * E, */+
etc.

6E: E + E•, */+
E: E •+ E, */+
E: E •* E, */+

E

it will choose to shift because the ‘*’ has higher precedence than
the rule E + E.

• On the other hand, with input symbol ’+’, it will choose to reduce,
because the input token then has the same precedence as the rule
to be reduced, and is left-associative.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 8

Example of Using Precedence to Solve S/R Conflict (2)

• Back to our dangling else example. We’ll have the state

10 S: "if" E "then" S •, "else"
S: "if" E "then" S•"else" S, "else"
etc.

• Can eliminate conflict by declaring the token “else” to have higher
precedence than “then” (and thus, than the first rule above).

• HOWEVER: best to limit use of precedence to these standard ex-
amples (expressions, dangling elses). If you simply throw them in
because you have a conflict you don’t understand, you’re like to end
up with unexpected parse trees or syntax errors.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 9

Reduce/Reduce Conflicts

• The lookahead symbols in LR(1) items are only considered for reduc-
tions in items that end in ‘•’.

• If a DFA state contains both

[X: α•, a] and [Y: β•, a]

then on input ‘a’ we don’t know which production to reduce.

• Such reduce/reduce conflicts are often due to a gross ambiguity in
the grammar.

• Example: defining a sequence of identifiers with

S: ǫ | id | id S

• There are two parse trees for the string id:

S ⇒id or S ⇒id S ⇒id.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 10

Reduce/Reduce Conflicts in DFA

• For this example, you’ll get states:

0 S’: •S, ⊣
S: •, ⊣
S: •id, ⊣
S: •id S, ⊣
S’: S •, ⊣

1S: id •, ⊣
S: id •S, ⊣
S: •, ⊣
S: id S •, ⊣
S: •id, ⊣
S: •id S, ⊣

id

• Reduce/reduce conflict on input ‘⊣’.

• Better rewrite the grammar: S: ǫ | id S.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 11

Parsing Errors

• One purpose of the parser is to filter out errors that show up in
parsing

• Later stages should not have to deal with possibility of malformed
constructs

• Parser must identify error so programmer knows what to correct

• Parser should recover so that processing can continue (and other
errors found).

• Parser might even correct error (e.g., PL/C compiler could “correct”
some Fortran programs into equivalent PL/1 programs!)

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 12

Identifying Errors

• All of the valid parsers we’ve seen identify syntax errors as soon as
possible.

• Valid prefix property: all the input that is shifted or scanned is the
beginning of some valid program. . .

• . . . But the rest of the input might not be.

• So in principle, deleting the lookahead (and subsequent symbols) and
inserting others will give a valid program.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 13

Automating Recovery

• Unfortunately, best results require using semantic knowledge and
hand tuning.

– E.g., a(i].y = 5 might be turned to a[i].y = 5 if a is statically known
to be a list, or a(i).y = 5 if a function.

• Some automatic methods can do an OK job that at least allows
parser to catch more than one error.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 14

Bison’s and CUP’s Technique

• The special terminal symbol error is never actually returned by the
lexer.

• Gets inserted by parser in place of erroneous tokens.

• Parsing then proceeds normally.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 15

Example of Bison’s Error Rules

Suppose we want to throw away bad statements and carry on

stmt : whileStmt

| ifStmt

| ...

| error NEWLINE

;

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 16

Response to Error

• Consider erroneous text like

if x y: ...

• When parser gets to the y, will detect error.

• Then pops items off parsing stack until it finds a state that allows a
shift or reduction on ‘error’ terminal

• Does reductions, then shifts ‘error’.

• Finally, throws away input until it finds a symbol it can shift after
‘error’, according to the grammar.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 17

Error Response, contd.

• So with our example:

stmt : whileStmt

| ifStmt

| ...

| error NEWLINE

;

We see ‘y’, throw away the ‘if x’, so as to be back to where a stmt
can start.

• Shift ‘error’ and throw away more symbols to NEWLINE. Then carry
on.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 18

Of Course, It’s Not Perfect

• “Throw away and punt” is sometimes called “panic-mode error recov-
ery”

• Results are often annoying.

• For example, in our example, there could be an INDENT after the
NEWLINE, which doesn’t fit the grammar and causes another error.

• Bison compensates in this case by not reporting errors that are too
close together

• But in general, can get cascade of errors.

• Doing it right takes a lot of work.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 19

Bison Examples

[See lecture15 directory.]

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 20

A Hierarchy of Grammar Classes

GLR

Unambiguous Grammars Ambiguous

Grammars

LR(k)

LR(1)

LALR(1)

SLR

LR(0)LL(0)

LL(k)

LL(1)

From Andrew
Appel, “Mod-
ern Compiler
Implementa-
tion in Java”

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 21

Summary

• Parsing provides a means of tying translation actions to syntax clearly.

• A simple parser: LL(1), recursive descent

• A more powerful parser: LR(1)

• An efficiency hack: LALR(1), as in Bison.

• Earley’s algorithm provides a complete algorithm for parsing all context-
free languages.

• We can get the same effect in Bison by other means (the %glr-parser
option, for Generalized LR), as seen in one of the examples from lec-
ture #5.

Last modified: Tue Feb 19 12:59:54 2019 CS164: Lecture #11 22

	Lecture 11: Parser Conflicts, Using Ambiguity, Error Recovery
	LR(1) Parsing and CUP/Bison
	LR(1) to LALR(1) Example
	LR(1) to LALR(1) Problematic Example
	Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	Using Precedence in Bison/CUP
	Example of Using Precedence to Solve S/R Conflict (1)
	Example of Using Precedence to Solve S/R Conflict (2)
	Reduce/Reduce Conflicts
	Reduce/Reduce Conflicts in DFA
	Parsing Errors
	Identifying Errors
	Automating Recovery
	Bison's and CUP's Technique
	Example of Bison's Error Rules
	Response to Error
	Error Response, contd.
	Of Course, It's Not Perfect
	Bison Examples
	A Hierarchy of Grammar Classes
	Summary

