CS164 Programming Languages and Compilers Spring 2019
Programming Assignment 2

Assigned: 6 March, 2019 Due: 10 April, 2019 at 11:59pm

1 Overview

The three programming assignments in this course will direct you to develop a compiler for
ChocoPy, a statically typed dialect of Python. The assignments will cover (1) lexing and pars-
ing of ChocoPy into an abstract syntax tree (AST), (2) semantic analysis of the AST, and (3) code
generation.

For this assignment, you are to implement semantic analysis and type checking for ChocoPy.
This phase of the compiler takes as input the AST of a parsed, syntactically valid ChocoPy pro-
gram, and outputs the same AST with additional type information added to expression nodes, and
(possibly) error messages corresponding to semantic errors in the input program.

This assignment will likely require much more effort than PA1, so start early. This assignment
also allows for a large amount of flexibility in design choices. Make sure to read through this
document and the ChocoPy reference manual thoroughly before deciding on an implementation
strategy.

2 Getting started

We are going to use the Github Classroom platform for managing programming assignments and
submissions.

e Visit https://classroom.github.com/g/zXXGaV07 for the assignment. You will need a GitHub
account to join.

e If you were part of a team for PA1, the same team carries on for PA2. Otherwise, the first team
member accepting the assignment should create a new team with some reasonable team name.
The second team member can then find the team in the list of open teams and join it when accept-
ing the assignment. A private GitHub repository will be created for your team. It should be of
the form https://github.com/cs164spring2019/pa2-chocopy-semantic-analysis-<team>
where <team> is the name of your team.

e Ensure you have Git, Apache Maven and JDK 8+ installed. See Section 3 for more information
regarding software.

e If your team name is <team>, then clone the git repository:

https://github.com/cs164spring2019/pa2-chocopy-semantic-analysis-<team>.git

It will contain all the files required for the assignment. Your repository must remain private;
otherwise, you will get 0 points in this assignment.

e Add the upstream repository in order to receive future updates to this repository. This must be
done only once per local clone of your repository. Run

git remote add upstream \
https://github.com/cs164spring2019/pa2-chocopy-semantic-analysis.git

e Run mvn clean package. This will compile the starter code, which implements a tiny subset
of the semantic analysis for ChocoPy. Your goal is to implement the full semantic analysis
for ChocoPy, including type checking, as per the language reference manual. This document
specifies the expected output format of typed ASTs.

e Run the following command to test your analysis against sample inputs (JSON outputs from
parsing) and expected outputs. Only one test will pass with the starter code:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=.s \
--dir src/test/data/pa2/sample --test

Windows users should replace the colon between the JAR names in the classpath with a semicolon:
java -cp "chocopy-ref.jar;target/assignment.jar" This applies to all java commands
listed in this document.

You will probably get tired of typing ‘java -cp ...chocopy.ChocoPy --pass=.s’ over and
over. Those of you using BASH may want to use the alias command to create an abbreviation.
Those using IntelliJ, of course, can simply set up suitable run and debug configurations.

3 Software dependencies
The software required for this assignment is as follows:

e Git, version 2.5 or newer: https://git-scm.com/downloads

e Java Development Kit (JDK), version 8 or newer: http://www.oracle.com/technetwork/
java/javase/downloads/index.html

Apache Maven, version 3.3.9 or newer: https://maven.apache.org/download.cgi

(optional) An IDE such as IntelliJ IDEA (free community editor or ultimate edition for students):
https://www.jetbrains.com/idea.

(optional) Python, version 3.6 or newer, for running ChocoPy programs in a Python interpreter:
https://www.python.org/downloads

If you are using Linux or MacOS, we recommend using a package manager such as apt or
homebrew. Otherwise, you can simply download and install the software from the websites listed
above. We also recommend using an IDE to develop and debug your code. In IntelliJ, you should
be able to import the repository as a Maven project.

4 Files and directories

The assignment repository contains a number of files that provide a skeleton for the project. Some
of these files should not be modified, as they are essential for the assignment to compile correctly.
Other files must be modified in order to complete the assignment. You may also have to create
some new files in this directory structure. The list below summarizes each file or directory in the
provided skeleton.

e pom.xml: The Apache Maven build configuration. You do not need to modify this as it is set
up to compile the entire pipeline. We will overwrite this file with the original pom.xml while
autograding.

e src/: The src directory contains manually editable source files, some of which you must modify
for this assignment. Classes in the chocopy.common package may not be modified, because they
are common to your assignment and the reference implementation/test framework. However,
you are free to duplicate/extend these classes in the chocopy.pa2 package or elsewhere.

— src/main/java/chocopy/pa2/StudentAnalysis.java: This class is the entry point to
the semantic analysis phase of your compiler. It contains a single method: public static
String process(String input, boolean debug). The first argument to this method
will be the AST produced by the parser in JSON format, and the return value should be
the output of semantic analysis in JSON format. The second argument to this method is
true if the --debug flag is provided on the command line when invoking the compiler. The
starter code contains a bare-bones implementation of this method that reads an AST from
JSON into a Program node, and serializes a result AST node into JSON. The semantic
analysis in the starter code performs two passes over the AST; you may have to modify
this method to add more passes or create more data structures such as the type hierarchy.

— src/main/java/chocopy/common/astnodes/*. java: This package contains one class for
every AST-node kind that appears in the expected input/output JSON format (ref. Sec-
tion 5.1.2 and Figure 1).

— src/main/java/chocopy/common/analysis/NodeAnalyzer. java: An interface contain-
ing method overloads for every node class in the AST hierarchy. Section 6.1 describes its
use.

— src/main/java/chocopy/common/analysis/AbstractNodeAnalyzer.java: A dummy
implementation of the NodeAnlyzer interface.

— src/main/java/chocopy/common/analysis/SymbolTable.java: This class contains a
sample implementation of a symbol table, which is a essentially a map from strings to
values of a generic type T. You can extend/duplicate this class in the chocopy.pa2 package
if you wish to add functionality.

— src/main/java/chocopy/common/analysis/types/*.java: This package contains a hier-
archy of classes that are used in the starter code to build a type environment. You may
want to add more classes to this hierarchy; refer to Section 6.1 for details.

— src/main/java/chocopy/pa2/DeclarationAnalyzer. java: This class implements a sim-
ple pass over the AST that analyzes global variable declarations and builds a symbol table.
You can modify this class to add the remaining semantic checks and analyze more declara-
tions. This is simply a suggested starting point and you are free to discard this class if you
do not want to use it.

— src/main/java/chocopy/pa2/TypeChecker. java: This class implements a simple pass
over the AST that assigns types to expressions when given a typing environment in the
form of a symbol table. You can modify this class to add the remaining typing rules. This
is simply a suggested starting point and you are free to discard this class if you do not want
to use it.

— src/test/data/pa2: This directory contains ChocoPy programs for testing your semantic
analysis.

*

/sample/*.py - Sample test programs covering a variety of semantic and typing rules
of the ChocoPy language that you need to handle in this assignment.
/sample/*.py.ast - ASTs corresponding to the same test programs in JSON format.
These will be the inputs to your semantic analysis when testing.
/sample/*.py.ast.typed - Typed ASTs corresponding to the test programs. These
are the expected outputs of your semantic analysis.

/student_contributed/good.py - A test program that is semantically valid and well-
typed. You have to modify this file to create a program that covers as many typing
rules in your implementation as possible.

/student_contributed/bad _semantic.py - A test program that contains semantic
errors. You have to modify this file to cover all the semantic errors that your imple-
mentation detects.

/student_contributed/bad _types.py - A test program that contains type checking
errors. You have to modify this file to cover as many type errors as your implementation
supports. You will also use excerpts from this file to explain error recovery in the
writeup (ref. Section 5.4).

e target/: The target directory will be created and populated after running mvn clean
package. It contains automatically generated files that you should not modify by hand. This
directory will be deleted before your submission.

e chocopy-ref.jar: A reference implementation of the ChocoPy compiler, provided by the in-

structors.

e README.md: You will have to modify this file with a writeup.

5 Assignment goals

The objective of this assignment is to build a semantic analysis for ChocoPy that takes as input a
ChocoPy abstract syntax tree (AST) in JSON format, and annotates expressions in the AST with
inferred types.

To get the AST in the first place, you can run an input ChocoPy program through the staff-
provided parser. The output of this parser then forms the input to the semantic analysis phase.
This two-step procedure can be performed by performing the following two commands (on a single

line each):

1. java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=r \
--out <ast_json_file> <chocopy_input_file>

2. java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=.s \

--out <typed._ast_json_file> <ast_json_file>

where <chocopy_input file> is a ChocoPy program (usually with a .py extension),
<ast_json_file> is the parsed AST in JSON format (usually with a .ast extension), and

<typed_ast_json_file> is the type-annotated AST in JSON format (usually with a .ast.typed
extension).

To simplify development, you can also combine the above two commands into a single command
that pipes the output of the first phase into the input of the second phase, without creating an AST
JSON file. The combined command (which is equivalent to running the above two commands) is
as follows:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=rs \
--out <typed_ast_json_file> <chocopy_input_file>
where <chocopy_input_file> is a ChocoPy program. In all cases, you can omit the ——out <file>
arguments to have the command print the JSON to standard output.

5.1 Input/output specification

The input to the semantic analysis phase will be an AST in JSON format. The output of the
semantic analysis phase is also expected to be in JSON format. In the absence of semantic errors,
the output should be the same AST with all expressions annotated with value-types. In case of
a semantic error, the output should contain a list of semantic errors along with source locations
corresponding to the AST nodes that contain the semantic errors.

The interface to your semantic analysis will be the class chocopy.pa2.StudentAnalysis.
In particular, the commands listed in this document will invoke the static method
StudentAnalysis.process(String input, boolean debug), which returns its output as a
String. The flag debug is set to true if the --debug option is given on the command-line when
invoking the compiler. You may use this flag to conditionally print debugging messages. The flag
will be unset during autograding.

The starter code contains a bare-bones implementation of StudentAnalysis.process(),
which performs very limited semantic and type checking. You are free to change the contents
of this method in any way you like. Section 6.1 describes the starter code in more detail.

The Sections 5.1.1 and 5.1.2 describe what a JSON format is and what kind of JSON ob-
jects the AST nodes contain. If you are familiar with these concepts from PA1, you can skip to
Section 5.1.3.

5.1.1 JSON format

JSON is a notation for representing a tree of objects. A JSON object is a set of key-value pairs
called properties, represented using curly braces:

{ <keyl>: <valuel>, <key2>: <value2>, ... }.
For example,

{ "product" : "iPad Pro", "company": "Apple", "year": 2016,
"released": true }.

Keys are always strings delimited by double quotes; the values can be strings, integers, booleans
(true/false), the value null, other JSON objects, or JSON arrays. Arrays are represented as a
list of values delimited by square brackets: [<valuel>, <value2>, ...]. A complete specification
for JSON may be found at https://json.org.

In our AST representation, we denote each AST node using a JSON object. Such a JSON
object has a particular kind, which specifies what keys the object must contain and what types the

corresponding values will take. For example, the Identifier kind specifies one property, with a
key called name, whose value must be a string corresponding to the name of the identifier. Similarly,
the UnaryExpr kind specifies two properties: a string-valued operator, and a property with key
operand whose value is of kind Expr. Kinds can extend other kinds, including the properties
specified by the extended kind as a subset of their own properties. This mirrors the subtyping
relations between the AST node types they represent. Both Identifier and UnaryExpr extend
kind Expr, and therefore JSON objects of these kinds may appear as values whenever an object
of kind Expr is expected. All kinds in our AST directly or indirectly extend the Node kind,
which specifies two properties: (1) a string-valued property called kind that simply contains the
name of the node’s kind and (2) location, an array of integers. The following is a sample JSON
representation of the AST corresponding to the unary expression (-foo):

{
"kind": "UnaryExpr",
"operator": "-",
"operand": {
"kind": "Identifier",
"name": "foo",
"location" : [1, 3, 1, 5]
},
"location" : [1, 2, 1, 5]
}

The location array always contains four integers and describes source code location infor-
mation for the corresponding AST node: (1) the line number of the leftmost character, (2) the
column number of the leftmost character, (3) the line number of the rightmost character, and (4)
the column number of the rightmost character.

5.1.2 AST-node kinds

For this assignment, we list the set of all kinds required to serialize ASTs in Figure 1. We use
the syntax kind K {...} to define a kind and kind K extends S {...} to define a kind K that
extends kind 8. Properties are defined as <k>:<v> where <k> is the name of the key and <v> is the
type of the value. Value types are one of string, int, bool, a JSON object of kind X, or a JSON
array of type t represented as [t]. Properties that may contain null values are suffixed with a
question mark.

When provided with a syntactically valid ChocoPy program, the output of the parser should
be a JSON object of kind Program. Most AST-node kinds correspond directly to production rules
in the grammar. A notable exception is the IfStmt kind, which only contains one elseBody even
though the grammar allows a sequence of elif statements. The if-elif-else form is syntactic
sugar; the parser de-sugars elifs as an elseBody with exactly one IfStmt in its body. Refer to
chocopy_language reference.pdf for an example of this equivalence.

5.1.3 Differences from Programming Assignment 1

The JSON object kinds listed in Figure 1 mostly resemble those specified in PA1, where you were
expected to develop a ChocoPy parser. For those familiar with the JSON nodes in PA1, here are
the key changes in PA2:

kind Node {
kind: string,
location: [int],
errorMsg: String?

}

kind Program extends Node {
declarations: [Declaration],
statements: [Stmt]

kind Declaration extends Node { }

kind ClassDef extends Declaration {
name: Identifier,
superClass: Identifier,
declarations: [Declaration]

kind FuncDef extends Declaration {
name: Identifier,
params: [TypedVar],
returnType: TypeAnnotation,
declarations: [Declaration],
statements: [Stmt]

kind VarDef extends Declaration {
var: TypedVar,
value: Literal

kind GlobalDecl
extends Declaration {
variable: Identifier

kind NonlocalDecl
extends Declaration {
variable: Identifier

kind TypedVar extends Node {
identifier: Identifier,
type: TypeAnnotation

kind TypeAnnotation
extends Node { }

kind ClassType extends TypeAnnotation {
className: string

}

kind ListType extends TypeAnnotation {
elementType: TypeAnnotation
}

kind ValueType {
kind: string
}

kind ClassValueType extens ValueType {
className: string

}

kind ListValueType extends ValueType {
elementType: ValueType
}

kind FuncType extends ValueType {
parameters: [ValueType]
returnType: ValueType

kind Stmt extends Node { }

kind ExprStmt extends Stmt {
expr: Expr

}

kind ReturnStmt extends Stmt {
value: Expr?

}

kind AssignStmt extends Stmt {
targets: [Expr],
value: Expr

kind IfStmt extends Stmt {
condition: Expr,
thenBody: [Stmt],
elseBody: [Stmt]

kind WhileStmt extends Stmt {
condition: Expr,
body: [Stmt]

kind ForStmt extends Stmt {
identifier: Identifier,
iterable: Expr,
body: [Stmt]

kind Expr extends Node {
inferredType: ValueType?
}

kind Identifier extends Expr {
name: string

}

kind BinaryExpr extends Expr {
left: Expr,
operator: string,
right: Expr

kind UnaryExpr extends Expr {
operator: string,
operand: Expr

kind IfExpr extends Expr {
condition: Expr,
thenExpr: Expr,
elseExpr: Expr

kind CallExpr extends Expr {
function: Identifier,
args: [Expr]

kind MethodCallExpr extends Expr {
method: MemberExpr,
args: [Expr]

kind IndexExpr extends Expr {
list: Expr,
index: Expr

kind MemberExpr extends Expr {
object: Expr,
member: Identifier

kind ListExpr extends Expr {
elements: [Expr]

}

kind Literal extends Expr { }

kind NoneLiteral extends Literal { }

kind Stringliteral extends Literal {
value: string

}

kind IntegerLiteral extends Literal {
value: int

}

kind BooleanLiteral extends Literal {
value: bool

}

kind Errors extends Node {
errors: [Error]

}

kind CompilerError extends Node { }

Figure 1: Kinds of JSON objects corresponding to AST nodes

e New object kinds ValueType, ClassValueType, ListValueType, and FuncType have been added.
These will be used to store information about types of program expressions inferred after type
checking, for use by the code-generation phase. The first three classes kinds are analogous to
TypeAnnotation and its two subtypes. FuncType carries information about the formal parameter
types and return type of a function. In ChocoPy, it does not represent the type of a first-
class value, but may be useful during code generation for determining coercions needed to pass
arguments. The difference between TypeAnnotation and ValueType is that the latter does not
extend Node; therefore, ValueType objects do not have a locations property. This should make
sense since the types assigned during semantic analysis are not actually present in the source
code.

e The kind Expr has a new property: inferredType, which may be null. In the ASTs produced
by the parser, this property is null for every expression. The semantic analysis infers types for
every program expression that can evaluate to a value. Specifically, the inferredType property
will remain null only for Identifier objects that appear directly in the properties of FuncDef,
ClassDef, TypedVar, GlobalDecl, NonlocalDecl, and MemberExpr.

e The Node kind has a new property: errorMsg. In the ASTs produced by the parser, this
property is null for every node. The errorMsg will be non-null for a Node if there was an error
in checking that node. For a well-typed ChocoPy program, the errorMsg property will be null
for every node in the output of the semantic analysis phase. It is acceptable for null-valued
properties to simply be omitted in a JSON representation.

5.2 Semantic checks

This section enumerates a list of semantic rules that your analysis should check. Violations of these
rules leads to a semantic error. For each semantic rule, we list the name of one or more test files,
provided in the src/test/data/pa2/sample directory, which contain a program that violates only
this semantic rule in one or more lines.

1. Identifiers must not be redefined in the same scope. See bad_duplicate_global.py,
bad_duplicate_local.py, and bad_duplicate_class.py.

2. Variables and functions may not shadow class names. See bad_shadow_local.py.

3. Nonlocal and global declarations must only refer to local variables declared in outer scope or
global variables respectively. See bad_nonlocal_global.py.

4. In class definitions, the declared super-class must either be object or be a user-defined class
that has been defined previously in the program. See bad_class_super.py.

5. In class definitions, attributes must not override definitions of attributes and methods inherited
from base classes. Further, attributes may not be overridden by methods of the same name in
sub-classes. See bad_class_attr.py.

6. In class definitions, methods must specify at least one formal parameter, and the first parameter
must be of the same type as the enclosing class. See bad_class _method.py.

7. In class definitions, methods can only override methods of the same name, inherited from
base classes, as long as the signatures match (with the exception of the first param). See
bad_class method_override.py and bad_class method override_attr.py.

8. In class definitions, __init__ methods must have exactly one formal parameter and a return type
of <None>. See bad_class_init_override.py and bad_class_init_return.py.

9. In function and method bodies, there must be no assignment to variables (nonlocal or global)
whose binding is inherited implicitly (i.e., without an explicit nonlocal or global declaration).
See bad_local_assign.py.

10. Functions or methods that return special types must have an explicit return statement along all
paths. See bad_return missing.py.

11. Return statements must not appear at the top level outside function or method bodies. See
bad_return_top.py.

12. Type annotations should not refer to class names that are not defined. See
bad_type_annotation.py.

5.3 Error handling

The semantic analysis phase detects two types of semantic errors: violations of the semantic rules
listed in Section 5.2, and type-checking errors, which are violations of the typing rules listed in
the ChocoPy language reference manual. If the input program contains semantic errors other than
typing errors, it need not (but may) report type-checking errors.

5.3.1 Reporting semantic errors

Your implementation should be able to recover from a semantic error and continue analyzing the
rest of the program in order to report as many semantic errors as possible. Unlike recovering from
parse errors, the error recovery in the semantic analysis is much simpler to perform, since you can
simply report an error and continue analyzing the rest of the AST.

For each semantic error, you must report the location of the error in source code using the
source location information of an AST node. For rules 1-10 listed in Section 5.2, the semantic error
should be reported at the site of the Identifier node corresponding to the variable, attribute,
class, function, or method whose assignment, declaration, or definition (where applicable) violates
a semantic rule. For rule 11, the error should be reported at the ReturnStmt node corresponding
to the top-level return statement. For rule 12, the error should be reported at the ClassType
node corresponding to the invalid type annotation. Consult the test outputs or the output of the
reference implementation for examples.

The autograder will use the following rule to evaluate your implementation on inputs that
contain a semantic error: a test passes only if all the semantic errors reported by the reference
implementation are also reported by your submitted implementation. In other words, the semantic
errors reported by the reference implementation should be a subset of the errors reported by your
implementation. Semantic errors will be compared for equality of the error message and left source
location for every error node. In case of multiple semantic errors, the order of reported errors does
not matter.

5.3.2 Reporting type checking errors

Nodes in which a semantic error is discovered will be marked (redundantly) with the error message
in the errorMsg field. This serves the additional purpose of suppressing further messages on a node
if there is already one reported.

For ill-typed expressions, we would like to infer the most specific type that is appropriate for
the expression. For example, if there is a problem when type checking a BinaryExpr containing the
== operator, say because the types of its operands do not match, then we insert an error message
and infer the class type bool for this expression, since we know that comparison operators always
result in a boolean. Similarly, if a CallExpr fails to type check because one of its arguments does
not conform to the declared type of the corresponding formal parameter, then we insert an error
message and infer the return type of the function for the entire call expression. However, if we fail
to type check a CallExpr because the identifier does not actually refer to a function in the current
scope, then we have no way to infer any specific type for this expression; therefore, we insert an
error message and simply infer the type object for the CallExpr node.

On test inputs that do not contain semantic errors, the autograder will evaluate your im-
plementation by comparing the type-annotated ASTs output by your implementation with the
type-annotated ASTs output by the reference implementation for equivalence: the ASTs repre-
sented by the JSON must be exactly the same. Only error messages matter when the program
has semantic errors. Therefore, it is essential that your implementation infers the same types and
inserts at least the same error messages as the reference implementation. The tests provided in the
sample directory cover all the type checking errors handled by the reference implementation. You
can refer to the test outputs as a guide for determining the appropriate error messages and inferred
types.

As a general rule of thumb: if, when implementing some typing rule, your analysis is unable
to prove some premise, then you should attempt to infer the type of the ill-typed node by omitting
the inconsistent premise. For example, the typing rule for selecting an element of a list is as follows:

O,M,C,Rl—el : [T]
O,M,C,RtF es:int
O,M,C,Rt‘eyles] : T

[LIST-SELECT]

If say you find that the expression e; is of some type [T, but ez does not have type int. In such
case, you can still infer a type T for the list-select expression based on the conclusion after inserting
an appropriate error message. However, if you find that the expression e; is not of a list type, then
you do not have any T to assign to the list-select expression; therefore, you infer the type object.
This rule of thumb can be applied deterministically for almost every typing rule. We next describe
some notable subtleties.

An ambiguity arises when type checking the binary operator +, since the inferred type for a
well-typed + expression is different depending on whether both of its operands are of type int, str,
or list type. The rule of thumb does not provide a unique solution for when say one operand is
an int and the other operand is a str. The analysis should handle ill-typed + expressions in the
following way: if at least one operand has type int, then infer int; otherwise, infer object. In
either case, an appropriate error message must be inserted at the ill-typed expression.

Finally, if there is more than one premise of a typing rule that fails to be true, then
the reported error message should correspond to the topmost premise that is false, accord-

10

ing to the order of premises listed in the typing rules given in the language reference manual:
chocopy_language reference.pdf.
To verify whether your error handling conforms to the errors reported by the reference imple-
mentation, simply test your implementation on the provided sample inputs:
java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=.s \
--dir src/test/data/pa2/sample --test

and look for the test inputs whose names start with the prefix "bad_".

5.4 Writeup

Before submitting your completed assignment, you must edit the README.md and provide the
following information: (1) names of the team members who completed the assignment, (2) acknowl-
edgements for any collaboration or outside help received, and (3) how many late hours have been
consumed (refer to the course website for grading policy).

Further, you must answer the following questions in your write-up by editing the README.md
file (one or two paragraphs per question is fine):

1. How many passes does your semantic analysis perform over the AST? List the names of these
passes and briefly explain the purpose of each pass.

2. What was the hardest component to implement in this assignment? Why was it challenging?

3. When type checking ill-typed expressions, why is it important to recover by inferring
the most specific type? What is the problem if we simply infer the type object
for every ill-typed expression? Explain your answer with the help of examples in the
student_contributed/bad_types.py test.

4. The typing rules for ChocoPy take pains to avoid assigning None to variables, attributes, and
list elements of types str, int, and bool. Why do you think this is the case? What benefits do
we gain? Alternatively, what issues do you foresee if we were to allow locations of these special
types to be assigned None values?

6 Implementation Notes

6.1 Classes in the starter code

The starter code provided to you provides a basic semantic analysis that can partially handle
global variable declarations, integer literals, and some binary operators. You are not required
to use any of these classes for your assignment. The assignment specification is simply that
you implement the StudentAnalysis.process() method to produce the expected JSON output.
This section describes the classes used in the starter code in case you choose to use them in your
assignment.

6.1.1 StudentAnalysis

The starter code performs two passes over the input AST. The first pass, named
DeclarationAnalyzer, collects global variable declarations into a symbol table. The second pass,
named TypeChecker, uses the symbol table to type check expressions. The symbol table is imple-
mented in class SymbolTable.

11

6.1.2 SymbolTable

The SymbolTable maps string-valued names to objects of some generic type T. The mapped type
is deliberately kept generic, since this implementation will also be useful in the subsequent code-
generation assignment.

The SymbolTable is a useful data structure to manage nested scopes: symbol tables can be
constructed with an optional reference to a parent symbol table, which is used to delegate a lookup
in case of missing entries. The symbol table corresponding to the outermost scope has no parent.

6.1.3 SymbolType and ValueType

The package chocopy.common.analysis.types contains a hierarchy of classes that may be useful
for semantic analysis and type checking. The root of this class hierarchy is the abstract class
SymbolType, which is the type of objects stored by the symbol table for semantic analysis and type
checking. You can think of this as the type of objects that can appear in the typing environments.
The class SymbolType contains value types for predefined classes: object, str, int, and bool.

The starter code provides a special abstract sub-class of SymbolType called ValueType. Value
types represent types that can be assigned to variables and any program expression that eval-
uates to a value. Therefore, ValueType has two concrete sub-classes corresponding to the two
types of values in ChocoPy: ClassValueType and ListValueType. These two classes have
fields that are very similar to the AST-node classes corresponding to variable/attribute type
annotations: ClassType and ListType. The class ValueType provides a static method to con-
vert these AST type annotations into value-types for type checking: public static ValueType
annotationToValueType (TypeAnnotation annotation).

The SymbolType class is also used for the field inferredType in the AST-node class Expr. If
you choose to use the classes provided by the starter code, then you will want to ensure that in the
absence of semantic errors, this field is non-null for all expressions that may evaluate to values (ref.
Section 5.1.3 for a list of nodes where this field may remain null). The symbol table may contain
other classes of objects that do not necessarily correspond to types of program variables: especially
functions anc classes. The typing environment can contain type information about variables as well
as functions. You may also want to use the symbol-table data structure to store information about
class and method definitions. If you wish to use the symbol table provided in the starter code, you
will need to create more subclasses of SymbolType to accommodate these classes of object.

6.1.4 NodeAnalyzer and AST traversal

The NodeAnalyzer interface provides a convenient mechanism to separate logic for handling dif-
ferent AST nodes of distinct concrete classes. The Node class (which is the root of the AST
hierarchy) defines a method dispatch(NodeAnalyzer<T>). When you invoke node.dispatch(a)
on an AST node whose concrete class is N, it will in turn invoke the overloaded a.analyze(N)
method and return its value. This is done by overriding Node#dispatch() in every single con-
crete AST node class. The class AbstractNodeAnalyzer implements this interface with a dummy
method for every AST node type that simply returns null values. A real analysis will typically
extend AbstractNodeAnalyzer and override methods corresponding to the nodes that are relevant
to that analysis.

This pattern is very useful when processing AST node variables of an abstract class. Take a
look at the code of TypeChecker in the starter code for a sample use of this pattern. In the method

12

analyze (BinaryExpr), the expression is type checked by first dispatching the type checker on each
of its operands, which are of abstract class Expr; the logic for each concrete expression class is sep-
arated into methods analyze(IntegerLiteral), analyze(Identifier), analyze(BinaryExpr),
and so on. Invoking the dispatch method on an Expr instance leads to the invocation of an
appropriate overloaded method in TypeChecker.

The return value of the analyze methods varies depending on the nature of the analysis.
In TypeChecker, the analysis returns ValueType objects when analyzing expressions and null
when analyzing nodes that do not evaluate to a value, such as statements and Program. In
DeclarationAnalyzer, the analysis returns SymbolType objects when analyzing declarations, in
order to store the results of the analysis into a symbol table, and null otherwise.

6.1.5 Errors and CompilerError

The starter code performs error reporting and recovery using two classes. An instance of the
Errors class is provided to every pass over the AST that checks for various semantic rules; errors
are reported by simply adding instances of CompilerError to the Errors object.

The constructor for class CompilerError takes an AST node as its first argument and a
message as its second argument. The locations property for the CompilerError JSON object is
populated by copying the source locations for the AST node provided as the first argument.

6.2 Recommendations

This assignment is likely much larger than the previous assignment. However, this assignment also
provides much more room for custom design decisions, enabling a flexible implementation strategy.
We have provided some directions in the form of a skeleton implementation in the starter code as
well as some recommendations in this section. However, what you end up doing is largely up to
you.

Tree traversal This algorithmic style described in Section 6.1.4—a recursive traversal of a com-
plex tree structure—is very important, because it is a very natural way to structure many compu-
tations on ASTs. A semantic analysis usually requires multiple passes over the AST to perform
various tasks.

Type hierarchy You will probably need to build a data structure that stores the inheritance
relationships between classes, both predefined and user-defined. This will be essential in answering
queries of type conformance (i.e., subtyping) as well as in computing joins (i.e., least upper bounds).
You may want to consider how the various semantic rules of ChocoPy constrain the inheritance
graph, in order to implement these operations efficiently.

Type checking There are several typing rules in ChocoPy that deal with type conformance,
special types (int, bool, str), empty lists and None values. It is very useful to identify a pattern
where similar rules repeatedly apply. For example, the rules for determining whether an argument
to a function call conforms to the declared formal parameter of the target function is similar to the
rule for assigning values to variables or list elements. In fact, this same pattern occurs in many
more rules as well. You can save a lot of development effort by precisely identifying such patterns
and implementing utility methods that can be re-used across different typing rules.

13

7 Submission
Submitting your completed assignment requires the following steps:

e Run mvn clean to rid your directory of any unnecessary files.

e Add and commit all your progress and push changes to the repository. Run git commit followed
by git push origin to achieve this.

e Tag the desired commit with pa2final. If the desired commit is the latest one, run git tag
pa2final. Otherwise, run git tag pa2final<commit-id> where <commit-id> is the commit
you want to tag as your final submission.

e Push the tag using git push origin pa2final.

8 Grading (100 points)

The grading rubric is as follows.

e 80 points for autograder tests (1 point per correct test / 80 tests). These include the tests
provided to you in the samples directory as well as unseen tests.

e 8 points for the README

— 2 points for each of the four questions listed in Section 5.4.

— Only 1 point will be awarded for questions with incomplete or vague responses.
e 6 points for tests written in src/test/pa2/data/student_contributed.

— 2 points for each of good.py, bad_type.py, and bad_semantic.py, for covering a range
of typing rules and semantic checks. Only exercise the rules that your implementation
handles!

— Only 1 point will be awarded for a test file with narrow coverage.

— 0 points will be awarded per test file if there was little to no effort in writing custom tests.
e 6 points code cleanliness and structure.

— 6 points for: clear naming for variables and other symbols, consistent spacing and punc-
tuation conventions, reasonable modularization of functions and other components, code
comments explaining non-obvious logic

— 3 points for: effort made but imprecise or lacking in quality.

— 0 points for: little to no effort to organize and document code.

14

8.1 Extra credit: Bug reports

The reference implementation possibly contains some bugs. If you find a bug, report it by making
a post on Piazza with a sample input program and describe how the expected output should differ.
The first student/team to report a bug gets extra credit (5 points per unique bug with a maximum
of 20 extra credits per team).

Bugs in the reference implementation are defined as (1) unexpected exceptions being reported
or (2) violations of the specifications of the assignment or the specifications of the ChocoPy manual,
which would lead to incorrect results. Minor mistakes in the ChocoPy manual or this document
itself are not considered bugs in the reference implementation, though we would appreciate any
such feedback.

The decision on whether to accept a bug report as valid and distinct from previous bug reports
is at the discretion of the instructors.

15

