
FSASIM: A Simulator for Finite-State Automata

P. N. Hilfinger

Chapter 1: Overview 1

1 Overview

The fsasim program reads in a description of a finite-state recognizer (either deterministic
or non-deterministic), and a sequence of strings. It reports which strings are recognized.

For example, here is a description of a (deterministic) FSR for the language described
by the regular expression ‘(01)*00’:

alphabet [01]
start state Begin
[0] -> Zero

state Zero
[0] -> Done
[1] -> Begin

final state Done

The alphabet declaration describes the alphabet used by the machine, in the format used
by the lex program to denote a pattern that matches one of a set of single characters.

The start state, state, and final state declarations introduce new states. Use start
state to introduce the initial state (by default, the first state declared). Use final state

to introduce a final state.

The lines containing -> denote transitions out of the last state declared. Each transi-
tion has the form of a character-set pattern as in lex followed by an arrow, followed by a
destination state.

Here is another example, this time for Ada identifiers, which start with a letter, followed
by letters, digits, and underscores, but not containing adjacent underscores and not ending
with an underscore:

alphabet [a-zA-Z0-9_]

start state 0
[a-zA-Z] -> 1

final state 1
[a-zA-Z0-9] -> 1
[_] -> 2

state 2
[^_] -> 1

As in lex, the notation ‘[^...]’ used under state 2 means “any character in the alphabet
other than. . . .”

Here is an example of a non-deterministic machine’s description.

Recognizer for 0(01)*1|(0|1)*0
alphabet [01]
start state A
[0] -> B
[01] -> A
[0] -> C

final state C
state B
[0] -> B1
[1] -> D

2 FSASIM: Finite-State Automata Simulator

state B1
[1] -> B

final state D

The following alternative machine description recognizes the same language, and uses epsilon
transitions.

Recognizer for 0(01)*1|(0|1)*0
alphabet [01]
start state Init
-> A1 # Epsilon transition
-> B1 # Epsilon transition

state A1
[0] -> A2
[1] -> A1

state A2
-> F
-> A1

state B1
[0] -> B2

state B2
-> B4
[0] -> B3

state B3
[1] -> B2

state B4
[1] -> F

final state F

After reading in the machine description, fsasim will process any number of quoted input
strings from a file or the standard input. For the machine just above, one might have the
following session:

% fsasim desc.fsm sample.inp
"" rejected.
"001010" accepted.
"001011" accepted.
"110001" rejected.
"110000" accepted.

where ‘sample.inp’ contains

""
"001010"
"001011"
"110001"
"110000"

Chapter 2: FSA Descriptions 3

2 FSA Descriptions

FSA descriptions are in free format; that is, you may insert additional whitespace
(blanks, tabs, newlines) freely except in the middle of keywords or charsets (described
below). You may also insert comments between declarations (but not within them). A
comment starts with the character ‘#’ and proceeds to the end of the line.

An FSA description has the following format

• An optional alphabet declaration of the form

alphabet charset

(See the description of charsets below). If this declaration is absent, the alphabet is
taken to consist of all characters between blank and delete (i.e., between ASCII codes
32 and 127), inclusive.

• Any number of state declarations, consisting of

− A header line having one of the three forms

state name

start state name

final state name

denoting a state labeled name that is, respectively, an ordinary state, the starting
state (there should be only one), or a final state (of which there may be any
number). The label name may be any sequence of letters, digits, periods, hyphens,
underscores, and dollar signs.

− Zero or more transition declarations having one of the two formats

charset -> state

-> state

Denoting, respectively, a transition on any of the characters in charset or an epsilon
transition.

Charsets

Ordinary transitions and the alphabet declaration use charsets to describe sets of char-
acters. These consist of a sequence of characters or character ranges surrounded in square
braces ([]). If the first character is ‘^’, the charset denotes the complement of the character
set specified by the remaining characters, relative to the declared alphabet (this form may
not be used in the alphabet declaration itself). You may use any characters in a charset,
but to include the special characters ‘]’, ‘\’, ‘^’, or ‘-’, you should precede them with a
backslash (‘\’). You can use the standard C escape characters for tabs, newlines, returns,
etc.

You may denote a range of characters as ‘c1-c2’, which is the same as listing all char-
acters whose codes are greater than or equal to that of c1 and less than or equal to that of
c2.

4 FSASIM: Finite-State Automata Simulator

Chapter 3: Using fsasim 5

3 Using fsasim

To invoke fsasim from a shell, type

fsasim [-v] [--verbose] [--deterministic] [--limit=limit] [inputfile ...]

The first inputfile contains the machine description. In the absence of an inputfile, all input
comes from the standard input (which is also denoted by an inputfile of -).

The input strings to be tested may either be appended to the FSA description, following
the keyword input, placed in subsequent inputfiles, or (if there is at least one inputfile) in
the standard input.

Each input string is surrounded in double quotes. Any embedded double quotes must
be preceded by a backslash (‘\’). You may also use the usual C/C++ conventions for special
characters (e.g., ‘\n’ for newline). You may optionally use whitespace to separate input
strings.

The –deterministic option causes fsasim to reject any non-deterministic machine descrip-
tion. The –limit option issues a warning if the machine has more than limit states. The
–verbose option causes fsasim to print out various explanatory messages. Finally, -v simply
prints the fsasim version number and exits.

6 FSASIM: Finite-State Automata Simulator

