
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Prof. R. Fateman
Fall, 2005

CS 164 Assignment 6: MJ Code Generation and Competition

Due: Thursday, Nov 24, 2005, 11:59PM

Overall objectives

This assignment requires you to revise your previous project, or start from the translator
we supplied to you. Or somewhat less likely start again from the interpreter we supplied to
you. You must produce machine language code that will execute MiniJavaprograms. These
programs should be executable (that is, compute results, and write output), and you should,
for example, be able to run Factorial.java or your sort program.

To simplify this task we have supplied you with a virtual machine simulator and an
assembler for it in the file simple-machine.lisp. It is open source. Feel free to look at it.
We have also set up a number of helpful programs which will take care of some of the routine
tasks. You are not allowed to modify the machine language of the machine you have in hand
in terms of the assignment, but you are welcome to modify it for your debugging purposes.
In fact, we think you won’t have to do any modifications here, either. We suggest moderation
in changing the machine, since we are convinced it is actually not necessary to do so.

The result of the processing should be tantamount to a binary encoding of a machine-
language program. You should also be able to display convincing assembly-language code for
any program that passes the type-checker, but is otherwise arbitrary MiniJava.

A serious implementation of MiniJavain assembler should likely have two kinds of run-
time checks: conformance to array bounds and insuring that you don’t try to follow a nil
pointer from a variable of a class that hasn’t been initialized.

Warning

Writing the code generator should be less time-consuming than the typechecker, at least
judging by code size.

1



CS 164 Assignment 6: MJ Code Generation and Competition 2

Some of the code in simple-compile.fasl has been re-used from the translator. Recall
that the code for assignment 5 (typechecker) was about 650 lines, if you include the environ-
ment setup. This code is about 330 lines long. We are supplying you with short-compile.lisp
which is a nearly-bare file, showing only the principal interfaces.

This project will again require close attention to detail, and you should run as many test
cases as you think are necessary to convince us that your program is correct. You are not
expected to produce code from an AST that fails to pass the typechecker.

Experience with this class suggests that you may find glitches in our compiler just as
for the typechecker and interpreter and possibly in the VM. It would not surprise us if your
program is better than ours.

How to approach this task

Starting from the AST, just as you did for typechecking, you can separately code the compila-
tion of each of the kinds of computational expressions you have encountered in typechecking.
That is, a central comp function can check for the “atomic” cases (e.g. this generates an
instruction to put this object on the stack.) Then you enter a dispatch to produce sections
of code for each MiniJavaconstruct. For example, to compile an IntegerLiteral 3 you can
call generate an instruction to put 3 on the run-time stack.

You will have to generate code for each construction If, Block, While etc.

What about Declarations?

One ordinarily doesn’t produce any code in compiling type declarations: these are used just
to help keep track of information for the rest of the code generation. There is some code
generated for function and variable declarations, including the compilation of the initial value
expressions for variables, but MJ doesn’t have that. The generation of code will proceed from
the compilation of function bodies. This code is stored in some other piece of memory, to
be called when necessary. Much of the sequence of operations will look just like the type-
checking, especially since you must shuffle around information about environments. In effect
when you need to get access to a variable, you will look up where it would live at run-time
in an environment, and then generate the appropriate reference instructions. You will have
to be keenly aware of the difference between lval and rval access to names or values, and how
to get and set values in different environments.

Does my code have to be efficient?

NO. It should be correct, and it should be fairly obviously correct, at least when looked at in
small pieces.

HOWEVER, we encourage you to look at optimization possibilities and supply another
version of your compiler that either produces more compact code, or faster-running code, or
perhaps shorter AND faster. The VM instructions may take variable amounts of time for
simulations. Details later.



CS 164 Assignment 6: MJ Code Generation and Competition 3

You will receive extra credit for achievements in optimization as well as presenting prob-
lematical MJ programs which break other teams’ optimizers. If you find bugs in our code,
please tell us.

Built-in Functions

If we had many built-in functions, we would have to systematically store these in some
“precompiled” form to load up with our compiled program. Since MiniJava is so meager
maybe we can just hack up a call to execute Println as an assembler op-code.

In order for optimization to make sense we need to have some input method. You will
provided such a method for integer input.

Where do I get information on the virtual machine?

There is more information on-line in the source files which completely define the assembler
and the VM, will be discussed in section this week as well as in the lecture notes for several
upcoming lectures numbers 19 / 20.

What do I turn in?

Expect to turn in one or more files comp.lisp, transcripts and tests described in README.
If you have compiler optimizations, turn those in too, with further discussion. Keep your eye
on the class newsgroup for suggestions.


