
Song
Spring 2015

CS 161
Computer Security Discussion 4

Question 1 Software Vulnerabilities (20 min)
For the following code, assume an attacker can control the value of basket passed into
eval basket. The value of n is constrained to correctly reflect the number of elements
in basket.
The code includes several security vulnerabilities. Circle three such vulnerabilities
in the code and briefly explain each of the three.

1 struct food {
2 char name [1 0 2 4] ;
3 int c a l o r i e s ;
4 } ;
5
6 /∗ Evaluate a shopping baske t with at most 32 food items .
7 Returns the number o f low−c a l o r i e items , or −1 on a problem . ∗/
8 int eva l ba sk e t (struct food basket [] , s i z e t n)
9 {

10 struct food good [3 2] ;
11 char bad [1 0 2 4] , cmd [1 0 2 4] ;
12 int i , t o t a l = 0 , ngood = 0 , s i z e bad = 0 ;
13
14 i f (n > 32)
15 return −1;
16
17 for (i = 0 ; i <= n ; ++i) {
18 i f (basket [i] . c a l o r i e s < 100)
19 good [ngood++] = basket [i] ;
20 else i f (basket [i] . c a l o r i e s > 500) {
21 s i z e t l en = s t r l e n (basket [i] . name) ;
22 s np r i n t f (bad + s ize bad , len , ”%s ” , basket [i] . name) ;
23 s i z e bad += len ;
24 }
25
26 t o t a l += basket [i] . c a l o r i e s ;
27 }
28
29 i f (t o t a l > 2500) {
30 const char ∗ fmt = ”health−f a c t o r −−c a l o r i e s %d −−bad−i tems %s” ;
31 f p r i n t f (s tde r r , ” l o t s o f c a l o r i e s ! ”) ;
32 s np r i n t f (cmd , s izeof cmd , fmt , t o ta l , bad) ;
33 system (cmd) ;
34 }
35
36 return ngood ;
37 }

Reminder: strlen calculates the length of a string, not including the terminating ′\0′

character. snprintf(buf, len, fmt, ...) works like printf, but instead writes to buf,
and won’t write more than len - 1 characters. It terminates the characters written with
a ′\0′. system runs the shell command given by its first argument.

Page 1 of 1

Solution: Solution: There are significant vulnerabilities at lines 17/19,22, and 33.

Line 17 has a fencepost error: the conditional test should be i < n rather than
i <= n. The test at line 14 assures that n doesn’t exceed 32, but if it’s equal to
32, and if all of the items in basket are ”good”, then the assignment at line 19 will
write past the end of good, representing a buffer overflow vulnerability.

At line 22, there’s an error in that the length passed to snprintf is supposed to
be available space in the buffer (which would be sizeof bad - size bad), but in-
stead it’s the length of the string being copied (along with a blank) into the buffer.
Therefore by supplying large names for items in basket, the attacker can write past
the end of bad at this point, again representing a buffer overflow vulnerability.

At line 33, a shell command is run based on the contents of cmd, which in turn
includes values from bad, which in turn is derived from input provided by the at-
tacker. That input could include shell command characters such as pipes (’|’) or
command separators (’;’), facilitating command injection.

Some more minor issues concern the name strings in basket possibly not being
correctly terminated with ′\0′s, which could lead to reading of memory outside of
basket at line 21 or line 22.

Note that there are no issues with format string vulnerabilities at any of lines 22,
31, or 32. For each of those, the format itself does not include any elements under
the control of the attacker.

A final note: do not hesitate to ask for help! Our office hours exist to help you. Please
visit us if you have any questions or doubts about the material.

Discussion 4 Page 2 of 1 CS 161 – Sp 15

