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Announcements

• Talk of possible interest next Monday:
Tor and the Censorship Arms Race:
Lessons Learned
– Roger Dingledine, head of the Tor project
– 4-5:30PM, 110 South Hall

• HKN reviews next Thursday (April 21)

• Project #2 out soon
– Due RRR week



Goals For Today

• General approaches (“styles”) to
detecting attacks

• The fundamental problem of evasion

• Analyzing successful attacks: forensics



Styles of Detection: Signature-Based

• Idea: look for activity that matches the structure of
a known attack

• Example (from the freeware Snort NIDS):
alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

• Can be at different semantic layers,
e.g.: IP/TCP header fields; packet payload; URLs



Signature-Based Detection, con’t

• E.g. for FooCorp, search for “../../” or “/etc/passwd”

• What’s nice about this approach?
– Conceptually simple
– Takes care of known attacks (of which there are zillions)
– Easy to share signatures, build up libraries

• What’s problematic about this approach?
– Blind to novel attacks
– Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions

– Simpler versions look at low-level syntax, not semantics
• Can lead to weak power (either misses variants, or generates

lots of false positives)



Vulnerability Signatures

• Idea: don’t match on known attacks, match on known
problems

• Example (also from Snort):
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msg:"Web-IIS ISAPI .ida attempt"
reference:bugtraq,1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

• That is, match URIs that invoke *.ida?*, have more than
239 bytes of payload, and have ACK set (maybe others too)

• This example detects any* attempt to exploit a particular
buffer overflow in IIS web servers
– Used by the “Code Red” worm
* (Note, signature is not quite complete)



Vulnerability Signatures, con’t

• What’s nice about this approach?
– Conceptually fairly simple
– Takes care of known attacks
– Easy to share signatures, build up libraries
– Can detect variants of known attacks
– Much more concise than per-attack signatures

• What’s problematic?
– Can’t detect novel attacks (new vulnerabilities)
– Signatures can be hard to write / express

• Can’t just observe an attack that works …
• … need to delve into how it works

Benefits of attack signatures



Styles of Detection: Anomaly-Based

• Idea: attacks look peculiar.

• High-level approach: develop a model of normal
behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

• FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
– If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists

• Big benefit: potential detection of a wide range of
attacks, including novel ones



Anomaly Detection, con’t

• What’s problematic about this approach?
– Can fail to detect known attacks
– Can fail to detect novel attacks, if don’t happen

to look peculiar along measured dimension
– What happens if the historical data you train on

includes attacks?
– Base Rate Fallacy particularly acute: if

prevalence of attacks is low, then you’re more
often going to see benign outliers

• High FP rate
• OR: require such a stringent deviation from “normal”

that most attacks are missed (high FN rate)



Specification-Based Detection

• Idea: don’t learn what’s normal; specify what’s
allowed

• FooCorp example: decide that all URL parameters
sent to foocorp.com servers must have at most
one ‘/’ in them
– Flag any arriving param with > 1 slash as an attack

• What’s nice about this approach?
– Can detect novel attacks
– Can have low false positives

• If FooCorp audits its web pages to make sure they comply

• What’s problematic about this approach?
– Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)



Styles of Detection: Behavioral

• Idea: don’t look for attacks, look for evidence of
compromise

• FooCorp example: inspect all output web traffic for
any lines that match a passwd file

• Example for monitoring user shell keystrokes:
unset HISTFILE

• Example for catching code injection: look at
sequences of system calls, flag any that prior
analysis of a given program shows it can’t generate
– E.g., observe process executing read(), open(), write(),
fork(), exec()    …

– … but there’s no code path in the (original) program that
calls those in exactly that order!



Behavioral-Based Detection, con’t

• What’s nice about this approach?
– Can detect a wide range of novel attacks
– Can have low false positives

• Depending on degree to which behavior is distinctive
• E.g., for system call profiling: no false positives!

– Can be cheap to implement
• E.g., system call profiling can be mechanized

• What’s problematic about this approach?
– Post facto detection: discovers that you definitely have a

problem, w/ no opportunity to prevent it
– Brittle: for some behaviors, attacker can maybe avoid it

• Easy enough to not type “unset HISTFILE”

• How could they evade system call profiling?
– Mimicry: adapt injected code to comply w/ allowed call sequences



Styles of Detection: Honeypots

• Idea: deploy a sacrificial system that has no
operational purpose

• Any access is by definition not authorized …
• … and thus an intruder

– (or some sort of mistake)

• Provides opportunity to:
– Identify intruders
– Study what they’re up to
– Divert them from legitimate targets



Honeypots, con’t

• Real-world example: some hospitals enter fake
records with celebrity names …
– … to entrap staff who don't respect confidentiality

• What’s nice about this approach?
– Can detect all sorts of new threats

• What’s problematic about this approach?
– Can be difficult to lure the attacker

– Can be a lot of work to build a convincing environment

– Note: both of these issues matter less when deploying
honeypots for automated attacks

• Because these have more predictable targeting & env. needs

• E.g. “spamtraps”: fake email addresses to catching spambots



5 Minute Break

Questions Before We Proceed?



The Problem of Evasion

• For any detection approach, we need to consider
how an adversary might (try to) elude it
– Note: even if the approach is evadable, it can still be

useful to operate in practice
– But if it’s very easy to evade, that’s especially worrisome

(security by obscurity)

• Some evasions reflect incomplete analysis
– In our FooCorp example, hex escapes or “..////.//../” alias
– In principle, can deal with these with implementation

care (make sure we fully understand the spec)



The Problem of Evasion, con’t

• Some evasions exploit deviation from the spec
– E.g., double-escapes for SQL injection:

    %25%32%37 ⇒ %27 ⇒  '

• Some can exploit more fundamental ambiguities:
– Problem grows as monitoring viewpoint increasingly

removed from ultimate endpoints
• Lack of end-to-end visibility

• Particularly acute for network monitoring

• Consider detecting occurrences of the string
“root” inside a network connection …
– We get a copy of each packet
– How hard can it be?



Detecting “root”: Attempt #1

• Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’
o Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters …

…….….root………..…………
1

Oops: TCP doesn’t preserve text boundaries

Are we done?

Packet

…….….ro
1

Packet #1

ot………..…………
2

Packet #2 Fix?



Detecting “root”: Attempt #2
• Okay: remember match from end of previous packet

Oops: IP doesn’t guarantee in-order arrival

ot………..…………
2

…….….ro
1?

- Now we’re managing state :-(
  Are we done?

…….….ro
1

Packet #1

When 2nd packet arrives, continue working on the match

ot………..…………

Packet #2

2
+



• Fix?

• We need to reassemble the entire TCP bytestream
– Match sequence numbers
– Buffer packets with later data (above a sequence “hole”)

• Issues?
– Potentially requires a lot of state
– Plus: attacker can cause us to exhaust state by sending

lots of data above a sequence hole

• But at least we’re done, right?

Detecting “root”: Attempt #3



Full TCP Reassembly is Not Enough
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• Fix?
• Idea: NIDS can alert upon seeing a retransmission

inconsistency, as surely it reflects someone up to no good
• This doesn’t work: TCP retransmissions broken in this

fashion occur in live traffic
– Rare (a few a day at ICSI)
– But real evasions much rarer still (Base Rate Fallacy)
⇒  This is a general problem with alerting on such ambiguities

• Idea: if NIDS sees such a connection, kill it
– Works for this case, since benign instance is already fatally broken
– But for other evasions, such actions have collateral damage

• Idea: rewrite traffic to remove ambiguities
– Works for network- & transport-layer ambiguities
– But must operate in-line and at line speed

Inconsistent TCP Retransmissions



Forensics

• Vital complement to detecting attacks:
figuring out what happened in wake of
successful attack

• This entails access to rich/extensive logs
– Plus tools for analyzing/understanding them
– (Ala’ Project #2!)

• It also entails looking for patterns and
understanding the implications of
structure seen in activity

• Consider these actual emails from
operational security …

Emails omitted from on‐line notes


