
Detecting Attacks, Part 2

CS 161: Computer Security

Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/

April 14, 2011

Announcements

• Talk of possible interest next Monday:
Tor and the Censorship Arms Race:
Lessons Learned
– Roger Dingledine, head of the Tor project
– 4-5:30PM, 110 South Hall

• HKN reviews next Thursday (April 21)

• Project #2 out soon
– Due RRR week

Goals For Today

• General approaches (“styles”) to
detecting attacks

• The fundamental problem of evasion

• Analyzing successful attacks: forensics

Styles of Detection: Signature-Based

• Idea: look for activity that matches the structure of
a known attack

• Example (from the freeware Snort NIDS):
alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

• Can be at different semantic layers,
e.g.: IP/TCP header fields; packet payload; URLs

Signature-Based Detection, con’t

• E.g. for FooCorp, search for “../../” or “/etc/passwd”

• What’s nice about this approach?
– Conceptually simple
– Takes care of known attacks (of which there are zillions)
– Easy to share signatures, build up libraries

• What’s problematic about this approach?
– Blind to novel attacks
– Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions

– Simpler versions look at low-level syntax, not semantics
• Can lead to weak power (either misses variants, or generates

lots of false positives)

Vulnerability Signatures

• Idea: don’t match on known attacks, match on known
problems

• Example (also from Snort):
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msg:"Web-IIS ISAPI .ida attempt"
reference:bugtraq,1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

• That is, match URIs that invoke *.ida?*, have more than
239 bytes of payload, and have ACK set (maybe others too)

• This example detects any* attempt to exploit a particular
buffer overflow in IIS web servers
– Used by the “Code Red” worm
* (Note, signature is not quite complete)

Vulnerability Signatures, con’t

• What’s nice about this approach?
– Conceptually fairly simple
– Takes care of known attacks
– Easy to share signatures, build up libraries
– Can detect variants of known attacks
– Much more concise than per-attack signatures

• What’s problematic?
– Can’t detect novel attacks (new vulnerabilities)
– Signatures can be hard to write / express

• Can’t just observe an attack that works …
• … need to delve into how it works

Benefits of attack signatures

Styles of Detection: Anomaly-Based

• Idea: attacks look peculiar.

• High-level approach: develop a model of normal
behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

• FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
– If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists

• Big benefit: potential detection of a wide range of
attacks, including novel ones

Anomaly Detection, con’t

• What’s problematic about this approach?
– Can fail to detect known attacks
– Can fail to detect novel attacks, if don’t happen

to look peculiar along measured dimension
– What happens if the historical data you train on

includes attacks?
– Base Rate Fallacy particularly acute: if

prevalence of attacks is low, then you’re more
often going to see benign outliers

• High FP rate
• OR: require such a stringent deviation from “normal”

that most attacks are missed (high FN rate)

Specification-Based Detection

• Idea: don’t learn what’s normal; specify what’s
allowed

• FooCorp example: decide that all URL parameters
sent to foocorp.com servers must have at most
one ‘/’ in them
– Flag any arriving param with > 1 slash as an attack

• What’s nice about this approach?
– Can detect novel attacks
– Can have low false positives

• If FooCorp audits its web pages to make sure they comply

• What’s problematic about this approach?
– Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)

Styles of Detection: Behavioral

• Idea: don’t look for attacks, look for evidence of
compromise

• FooCorp example: inspect all output web traffic for
any lines that match a passwd file

• Example for monitoring user shell keystrokes:
unset HISTFILE

• Example for catching code injection: look at
sequences of system calls, flag any that prior
analysis of a given program shows it can’t generate
– E.g., observe process executing read(), open(), write(),
fork(), exec() …

– … but there’s no code path in the (original) program that
calls those in exactly that order!

Behavioral-Based Detection, con’t

• What’s nice about this approach?
– Can detect a wide range of novel attacks
– Can have low false positives

• Depending on degree to which behavior is distinctive
• E.g., for system call profiling: no false positives!

– Can be cheap to implement
• E.g., system call profiling can be mechanized

• What’s problematic about this approach?
– Post facto detection: discovers that you definitely have a

problem, w/ no opportunity to prevent it
– Brittle: for some behaviors, attacker can maybe avoid it

• Easy enough to not type “unset HISTFILE”

• How could they evade system call profiling?
– Mimicry: adapt injected code to comply w/ allowed call sequences

Styles of Detection: Honeypots

• Idea: deploy a sacrificial system that has no
operational purpose

• Any access is by definition not authorized …
• … and thus an intruder

– (or some sort of mistake)

• Provides opportunity to:
– Identify intruders
– Study what they’re up to
– Divert them from legitimate targets

Honeypots, con’t

• Real-world example: some hospitals enter fake
records with celebrity names …
– … to entrap staff who don't respect confidentiality

• What’s nice about this approach?
– Can detect all sorts of new threats

• What’s problematic about this approach?
– Can be difficult to lure the attacker

– Can be a lot of work to build a convincing environment

– Note: both of these issues matter less when deploying
honeypots for automated attacks

• Because these have more predictable targeting & env. needs

• E.g. “spamtraps”: fake email addresses to catching spambots

5 Minute Break

Questions Before We Proceed?

The Problem of Evasion

• For any detection approach, we need to consider
how an adversary might (try to) elude it
– Note: even if the approach is evadable, it can still be

useful to operate in practice
– But if it’s very easy to evade, that’s especially worrisome

(security by obscurity)

• Some evasions reflect incomplete analysis
– In our FooCorp example, hex escapes or “..////.//../” alias
– In principle, can deal with these with implementation

care (make sure we fully understand the spec)

The Problem of Evasion, con’t

• Some evasions exploit deviation from the spec
– E.g., double-escapes for SQL injection:

 %25%32%37 ⇒ %27 ⇒ '

• Some can exploit more fundamental ambiguities:
– Problem grows as monitoring viewpoint increasingly

removed from ultimate endpoints
• Lack of end-to-end visibility

• Particularly acute for network monitoring

• Consider detecting occurrences of the string
“root” inside a network connection …
– We get a copy of each packet
– How hard can it be?

Detecting “root”: Attempt #1

• Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’
o Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters …

…….….root………..…………
1

Oops: TCP doesn’t preserve text boundaries

Are we done?

Packet

…….….ro
1

Packet #1

ot………..…………
2

Packet #2 Fix?

Detecting “root”: Attempt #2
• Okay: remember match from end of previous packet

Oops: IP doesn’t guarantee in-order arrival

ot………..…………
2

…….….ro
1?

- Now we’re managing state :-(
 Are we done?

…….….ro
1

Packet #1

When 2nd packet arrives, continue working on the match

ot………..…………

Packet #2

2
+

• Fix?

• We need to reassemble the entire TCP bytestream
– Match sequence numbers
– Buffer packets with later data (above a sequence “hole”)

• Issues?
– Potentially requires a lot of state
– Plus: attacker can cause us to exhaust state by sending

lots of data above a sequence hole

• But at least we’re done, right?

Detecting “root”: Attempt #3

Full TCP Reassembly is Not Enough

NIDS

r r
seq=1, TTL=22

n
seq=1, TTL=16

X

o o
seq=2, TTL=22

i
seq=2, TTL=16

X

o o
seq=3, TTL=22

c
seq=3, TTL=16

X

t t
seq=4, TTL=22

e
seq=4, TTL=16

X

S
en

de
r

/ A
tta

ck
er

R
eceiver

r~~~

~~~~r~~~ro~~roo~root

~~~~
r~~~?

n~~~?

ri~~?

ni~~?

ri~~? ro~~?

ni~~? no~~?

ric~? roc~? rio~? roo~?
nic~? noc~? nio~? noo~?

rice? roce? rict? roct?
riot? root? rioe? rooe?
nice? noce? nict? noct?
niot? noot? nioe? nooe?

Packet discarded in transit due
to TTL hop count expiring

TTL field in IP header
specifies maximum

forwarding hop count

Assume the
Receiver is 20 hops

away

Assume NIDS is 15 hops away

• Fix?
• Idea: NIDS can alert upon seeing a retransmission

inconsistency, as surely it reflects someone up to no good
• This doesn’t work: TCP retransmissions broken in this

fashion occur in live traffic
– Rare (a few a day at ICSI)
– But real evasions much rarer still (Base Rate Fallacy)
⇒ This is a general problem with alerting on such ambiguities

• Idea: if NIDS sees such a connection, kill it
– Works for this case, since benign instance is already fatally broken
– But for other evasions, such actions have collateral damage

• Idea: rewrite traffic to remove ambiguities
– Works for network- & transport-layer ambiguities
– But must operate in-line and at line speed

Inconsistent TCP Retransmissions

Forensics

• Vital complement to detecting attacks:
figuring out what happened in wake of
successful attack

• This entails access to rich/extensive logs
– Plus tools for analyzing/understanding them
– (Ala’ Project #2!)

• It also entails looking for patterns and
understanding the implications of
structure seen in activity

• Consider these actual emails from
operational security …

Emails omitted from on‐line notes

