
Detecting Attacks, Part 1

CS 161: Computer Security
Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/
April 12, 2011

The Problem of Detecting Attacks
• Given a choice, we’d like our systems to be airtight-secure
• But often we don’t have that choice

– #1 reason why not: cost (in different dimensions)
• A (messy) alternative: detect misuse rather than build a

system that can’t be misused
– Upon detection: clean up damage, maybe block incipient “intrusion”
– Note: can be prudent for us to do this even if we think system is

airtight - defense in depth
– Note: “misuse” might be about policy rather than security

• E.g. your own employees shouldn’t be using file-sharing apps

• Problem space:
– Lacks principles
– Has many dimensions (where to monitor, how to look for problems,

how much accuracy required, what can attackers due to elude us)
– Is messy and in practice also very useful

Example Scenario
• Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
– http://foocorp.com/amazeme.exe?profile=info/luser.txt
– Script makes sure that “profile” arg. is a relative filename

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

5. bin/amazeme -p xxx0. http://foocorp/amazeme.exe?profile=xxx
1. GET /amazeme.exe?profile=xxx

3. GET /amazeme.exe?profile=xxx

2. GET /amazeme.exe?profile=xxx

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

5. bin/amazeme -p xxx

7. 200 OK
 Output of bin/amazeme

6. Output of bin/amazeme sent back

8. 200 OK
 Output of bin/amazeme

9. 200 OK
 Output of bin/amazeme

10. Browser renders output

Example Scenario
• Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
– http://foocorp.com/amazeme.exe?profile=info/luser.txt
– Script makes sure that “profile” arg. is a relative filename

• Due to installed base issues, you can’t alter
backend components like amazeme.exe

• One of the zillion of attacks you’re worried about is
information leakage via directory traversal:
– E.g. GET /amazeme.exe?profile=../../../../../etc/passwd

Helpful error message
returns contents of
profile that appeared
mis-formed, revealing
the raw password file

Example Scenario
• Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
– http://foocorp.com/amazeme.exe?profile=info/luser.txt
– Script makes sure that “profile” arg. is a relative filename

• Due to installed base issues, you can’t alter
backend components like amazeme.exe

• One of the zillion of attacks you’re worried about is
information leakage via directory traversal:
– E.g. GET /amazeme.exe?profile=../../../../../etc/passwd

• What different approaches could detect this attack?

Detecting the Attack: Where & How?
• Devise an intrusion detection system

– An IDS: “eye-dee-ess”
• Approach #1: look at the network traffic

– (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy
of incoming/outgoing
HTTP traffic

8. 200 OK
 Output of bin/amazeme

Detecting the Attack: Where & How?
• Devise an intrusion detection system

– An IDS: “eye-dee-ess”
• Approach #1: look at the network traffic

– (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

• Pros:
– No need to touch or trust end systems

• Can “bolt on” security
– Cheap: cover many systems w/ single monitor
– Cheap: centralized management

Network-Based Detection

• Issues?
– Scan for “/etc/passwd”?

• What about other sensitive files?
– Scan for “../../”?

• Sometimes seen in legit. requests (= false positive)
• What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

– Okay, need to do full HTTP parsing
• What about “..///.///..////”?

– Okay, need to understand Unix semantics too!

– What if it’s HTTPS and not HTTP?
• Need access to decrypted text / session key - yuck!

Detecting the Attack, con’t
• Approach #2: instrument the web server

– Host-based IDS (sometimes called “HIDS”)
– Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

bin/amazeme -p xxx

HIDS instrumentation
added inside here

6. Output of bin/amazeme sent back

Detecting the Attack, con’t
• Approach #2: instrument the web server

– Host-based IDS (sometimes called “HIDS”)
– Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

• Pros:
– No problems with HTTP complexities like %-escapes
– Works for encrypted HTTPS!

• Issues?
– Have to add code to each (possibly different) web server

• And that effort only helps with detecting web server attacks
– Still have to consider Unix filename semantics (“..////.//”)
– Still have to consider other sensitive files

Detecting the Attack, con’t
• Approach #3: each night, script runs to analyze log

files generated by web servers
– Again scan ?arguments sent to back-end programs

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

Nightly job runs on this
system, analyzing logs

Detecting the Attack, con’t
• Approach #3: each night, script runs to analyze log

files generated by web servers
– Again scan ?arguments sent to back-end programs

• Pros:
– Cheap: web servers generally already have such logging

facilities built into them
– No problems like %-escapes, encrypted HTTPS

• Issues?
– Again must consider filename tricks, other sensitive files
– Can’t block attacks & prevent from happening
– Detection delayed, so attack damage may compound
– If the attack is a compromise, then malware might be

able to alter the logs before they’re analyzed
• (Not a problem for directory traversal information leak example)

Detecting the Attack, con’t
• Approach #4: monitor system call activity of

backend processes
– Look for access to /etc/passwd

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of
system calls accessing files

Detecting the Attack, con’t
• Approach #4: monitor system call activity of

backend processes
– Look for access to /etc/passwd

• Pros:
– No issues with any HTTP complexities
– May avoid issues with filename tricks
– Only generates an “alert” if the attack succeeded

• Sensitive file was indeed accessed

• Issues?
– Might have to analyze a huge amount of data
– Maybe other processes make legit accesses to the

sensitive files (false positives)
– Maybe we’d like to detect attempts even if they fail?

• “situational awareness”

Detecting the Attack, con’t
• Only generates an “alert” if the attack succeeded

– How does this work for other approaches?
• Instrumenting web server:

– Need to inspect bin/amazeme ’s output
– What do we look for?

• Can’t just assume failure = empty output from bin/amazeme …

With this version of the Not Found page, the
attack fails, but there’s still a full-fledged
web page. All that indicates failure is the
lack of the contents of the password file

Detecting the Attack, con’t
• Only generates an “alert” if the attack succeeded

– How does this work for other approaches?
• Instrumenting web server:

– Need to inspect bin/amazeme ’s output
– What do we look for?

• Can’t just assume failure = empty output from bin/amazeme …

• Monitoring log files
– Same, but only works if servers log details about output

they generate
• Network-based

– Same, but have to worry about encoding issues
• E.g., what if server reply is gzip-compressed?

An Alternative Paradigm
• Idea: rather than detect attacks, launch them yourself!
• Vulnerability scanning: use a tool to probe your own

systems with a wide range of attacks, fix any that succeed
• Pros?

– Proactive: can prevent future misuse
– Intelligence: can ignore IDS alarms that you know can’t succeed

• Issues?
– Can take a lot of work
– Not so helpful for systems you can’t modify
– Dangerous for disruptive attacks

• And you might not know which these are …

• In practice, this approach is prudent and widely used today
– Good complement to also running an IDS

Detection Accuracy
• Two types of detector errors:

– False positive (FP): alerting about a problem when in
fact there was no problem

– False negative (FN): failing to alert about a problem
when in fact there was a problem

• Detector accuracy is often assessed in terms of
rates at which these occur:
– Define Ι to be an instance of intrusive behavior

(something we want to detect)
– Define Α to be the presence of a detector alarm

• Define:
– False positive rate = P[Α|¬ Ι]
– False negative rate = P[¬Α| Ι]

Perfect Detection
• Is it possible to build a detector for our example

with a false negative rate of 0%?
• Algorithm to detect bad URLs with 0% FN rate:

void	 my_detector_that_never_misses(char	 *URL)
{
	 	 	 	 printf("yep,	 it's	 an	 attack!\n");
}

– In fact, it works for detecting any bad activity with no
false negatives! Woo-hoo!

• Wow, so what about a detector for bad URLs that
has NO FALSE POSITIVES?!
– printf("nope,	 not	 an	 attack\n");

Detection Tradeoffs
• The art of a good detector is achieving an

effective balance between FPs and FNs
• Suppose our detector has an FP rate of

0.1% and an FN rate of 2%. Is it good
enough? Which is better, a very low FP rate
or a very low FN rate?
– Depends on the cost of each type of error …

• E.g., FP might lead to paging a duty officer and
consuming hour of their time; FN might lead to $10K
cleaning up compromised system that was missed

– … but also critically depends on the rate at
which actual attacks occur in your environment

Base Rate Fallacy
• Suppose our detector has a FP rate of 0.1% (!)

and a FN rate of 2% (not bad!)
• Scenario #1: our server receives 1,000 URLs/day,

and 5 of them are attacks
– Expected # FPs each day = 0.1% * 995 ≈ 1
– Expected # FNs each day = 2% * 5 = 0.1 (< 1/week)
– Pretty good!

• Scenario #2: our server receives 10,000,000
URLs/day, and 5 of them are attacks
– Expected # FPs each day ≈ 10,000 :-(

• Nothing changed about the detector; only our
environment changed
– Accurate detection very challenging when base rate of activity

we want to detect is quite low

Detecting Successful Attacks
• Suppose we’re worried about a version of the

attack that modifies /etc/passwd rather than
retrieves it
– Say: GET /amazeme.exe?profile=/etc/passwd

 &newcolor=w00t:nlT9q23cjwVs:0:0:/:/bin/bash
• How can we detect if it succeeds?
• Maybe amazeme.exe generates specific output if

file modified - if so, look for that
• But if not, then NIDS / web server instrumentation /

log monitor all have difficulty in telling if succeeded
– Note: similar problems arise with other successful

attacks, such as “did attempted malware infection
succeed”?

– System call monitoring could identify change

Detecting Successful Attacks, con’t
• Alternative approach: periodic process that looks

for changes to sensitive files, flags for operator
– Not based on file modification time, as program can

change that
• Instead: verify against a database of say SHA256

hashes
• Problem: what if malware compromised the kernel?

– Could alter the hashes and/or the content returned when
reading a given file

• Fix?
– One approach:

• Don’t store hashes on local system; send over net elsewhere
• To verify, boot separate kernel from read-only media

Detection vs. Blocking
• If we can detect attacks, how about blocking them?
• Issues:

– Not a possibility for retrospective analysis (e.g., nightly
job that looks at logs)

– Quite hard for detector that’s not in the data path
• E.g. How can NIDS that passively monitors traffic block attacks?

– Change firewall rules dynamically; forge RST packets
– And still there’s a race regarding what attacker does before block

– False positives get more expensive
• You don’t just bug an operator, you damage production activity

• Today’s technology/products pretty much all offer
blocking
– Intrusion prevention systems (IPS - “eye-pee-ess”)

