
Securing Internet
Communication

CS 161: Computer Security
Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/
March 31, 2011

Today’s Lecture

• Applying crypto technology in practice
• Goal #1: overview of the most prominent

Internet security protocols
– SSL/TLS: transport-level (process-to-process)

on top of TCP
– (DNSSEC: securing domain name lookups)
– Issues that arise in securing these

• Goal #2: cement understanding of crypto
building blocks & how they’re used together

Building Secure End-to-End Channels

• End-to-end = communication protections
achieved all the way from originating client
to intended server
– With no need to trust intermediaries

• Dealing with threats:
– Eavesdropping?

• Encryption (including session keys)
– Manipulation (injection, MITM)?

• Integrity (use of a MAC); replay protection
– Impersonation?

• Signatures
What’s missing?
Availability …()

Building A Secure End-to-End
Channel: SSL/TLS

• SSL = Secure Sockets Layer (predecessor)
• TLS = Transport Layer Security (standard)

– Both terms used interchangeably
• Notion: provide means to secure any application

that uses TCP

SSL/TLS In Network Layering

Application

Transport

(Inter)Network

Link

Physical

7
4
3

2

1

Transport (TCP)

(Inter)Network

Link

Physical

SSL / TLS7
4
3

2

1

Application7

Building A Secure End-to-End
Channel: SSL/TLS

• SSL = Secure Sockets Layer (predecessor)
• TLS = Transport Layer Security (standard)

– Both terms used interchangeably
• Notion: provide means to secure any application

that uses TCP
– Secure = encryption/confidentiality + integrity +

 authentication (of server, but not of client)
– E.g., puts the ‘s’ in “https”

Regular web surfing - http: URL

But if we click here …

Web surfing with TLS/SSL - https: URL

Note: all of these images, etc., are
now also fetched via https: URLs.

Doing so gives the web page full
integrity, in keeping with end-to-
end security.

Building A Secure End-to-End
Channel: SSL / TLS

• SSL = Secure Sockets Layer (predecessor)
• TLS = Transport Layer Security (standard)

– Both terms used interchangeably
• Notion: provide means to secure any application

that uses TCP
– Secure = encryption/confidentiality + integrity +

 authentication (of server, but not of client)
– E.g., puts the ‘s’ in “https”

• API similar to “socket” interface used for regular
network programming
– Fairly easy to convert an app to be secured

HTTPS Connection (SSL / TLS)

• Browser (client) connects
via TCP to Amazon’s
HTTPS server

• Client sends over list of
crypto protocols it supports

• Server picks protocols to
use for this session

• Server sends over its
certificate

• (all of this is in the clear)

• Client now validates cert

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support
(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS), conʼt
• For RSA, browser constructs a long

(2048 bits) random string R

• Browser sends R encrypted using
Amazon’s public RSA key KA

• From R browser & server derive
pairs of symm. cipher keys (CB, CS)
and MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

• If good MAC, Browser displays

• All subsequent communication
encrypted w/ symmetric cipher
(e.g., AES128) cipher keys, MACs
– Messages also numbered to thwart

replay attacks

Browser Amazon

Here’s my cert

~2-3 K
B of d

ata

{R}KA

R

R

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Inside the Serverʼs Certificate
• Domain name associated w/ cert
– e.g., www.amazon.com

• Amazon’s public key (e.g., 2048 bits for RSA)

• A bunch of auxiliary info (physical address, type of
cert, expiration time)

• Name of certificate’s issuer (e.g., Verisign)

• Optional URL to revocation center to check for
revoked certs

• A public-key signature of a hash (SHA-1) of all this
–Constructed using the issuer’s private RSA key
–Call this signature S

Validating Amazonʼs Identity
• Browser compares domain name in cert w/ URL
–Note: this provides an end-to-end property

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to the
issuer
–These are hardwired into the browser - trusted!

• Browser applies issuer’s public key to invert
signature S, obtaining hash of what issuer signed
–Compares with its own SHA-1 hash of Amazon’s cert

• Assuming hashes match, now have high
confidence it’s indeed Amazon …
– assuming signatory is trustworthy

= assuming didn’t lose
private key; assuming
didn’t sign thoughtlessly

End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi
session?
– (maybe by breaking crummy WEP security)
– Encrypted communication is unreadable

• No problem!

• DNS cache poisoning?
– Client goes to wrong server
– Detects impersonation

• No problem!

• Attacker hijacks our connection, injects new traffic
– Data receiver rejects it due to failed integrity check

• No problem!

Powerful Protections, con’t

• DHCP spoofing?
– Client goes to wrong server
– Detects impersonation

• No problem!

• Attacker manipulates routing to run us by an
eavesdropper or take us to the wrong server?
– They can’t read; we detect impersonation

• No problem!

• Attacker slips in as a Man In The Middle?
– They can’t read, they can’t inject
– They can’t even replay previous encrypted traffic
– No problem!

Validating Amazonʼs Identity, conʼt
• Browser retrieves cert belonging to the issuer
–These are hardwired into the browser - trusted!

• What if browser can’t find a cert for the issuer?

Validating Amazonʼs Identity, conʼt
• Browser retrieves cert belonging to the issuer
–These are hardwired into the browser - trusted!

• What if browser can’t find a cert for the issuer?

• If it can’t find the cert, then warns the user that site
has not been verified
–Note, can still proceed, just without authentication

• Q: Which end-to-end security properties do we lose
if we incorrectly trust that the site is whom we think?

• A: All of them!
–Goodbye confidentiality, integrity, authentication
–Attacker can read everything, modify, impersonate

SSL / TLS Limitations
• Properly used, SSL / TLS provides powerful end-

to-end protections

• So why not use it for everything??

• Issues:
–Cost of public-key crypto

o Can buy hardware to accelerate, but $$
o Note: symmetric key crypto on modern hardware is non-issue

–Hassle of buying/maintaining certs (fairly minor)

(Circa April 2008)

SSL / TLS Limitations
• Properly used, SSL / TLS provides powerful end-

to-end protections

• So why not use it for everything??

• Issues:
–Cost of public-key crypto

o Can buy hardware to accelerate, but $$
o Note: symmetric key crypto on modern hardware is non-issue

–Hassle of buying/maintaining certs (fairly minor)
–DoS amplification

o Client can force server to undertake public key operations
o But: requires established TCP connection, and given that, there

are other juicy targets like back-end databases
– Integrating with other sites that don’t use HTTPS
–Latency: extra round trips ⇒ pages take longer to load

SSL / TLS Limitations, conʼt
• Problems that SSL / TLS does not take care of ?

• TCP-level denial of service
–SYN flooding
–RST injection

o (but does protect against data injection!)

• SQL injection / XSS / server-side coding/logic flaws
• Browser coding/logic flaws
• User flaws
–Weak passwords
–Phishing

• Issues of trust …

TLS/SSL Trust Issues

• User has to make correct trust decisions …

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

Certificate Errors

What should you do if you see a SSL certificate
error?

• Continue on to the site and ignore the error?
• Forget about visiting the site?

What	
 if	
 you	
 learned	
 that	
 62%	
 of	
 SSL-­‐enabled
websites	
 have	
 invalid	
 certs?

TLS/SSL Trust Issues, con’t
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

TLS/SSL Trust Issues
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …

TLS/SSL Trust Issues
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …
• … and it’s not just their diligence & security that

matters …
– “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they
don't even do that much.” - Matt Blaze, circa 2010

Securing DNS Lookups

• How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

• Idea #1: do DNS lookups over TLS
– (assuming either we run DNS over TCP, or we use

“Datagram TLS”)

requesting host
xyz.poly.edu gaia.cs.umass.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

(‘umass.edu’, ‘cs.umass.edu’)
dns.cs.umass.edu

78

TLD DNS server (‘.edu’)

Securing DNS using SSL / TLS

Host at xyz.poly.edu
wants IP address for
gaia.cs.umass.edu

Idea: connections
{1,8}, {2,3}, {4,5}
and {6,7} all run
over SSL / TLS

Securing DNS Lookups

• How can we ensure that when clients look
up names with DNS, they can trust the
answers they receive?

• Idea #1: do DNS lookups over TLS
– (assuming either we run DNS over TCP, or we

use “Datagram TLS”)
– Issues?

• Performance: DNS is very lightweight. TLS is not.
• Caching: crucial for DNS scaling. But then how do

we keep authentication assurances?

