Networking Overview

CS 161: Computer Security

Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/

Focus For Today’s Lecture

« Sufficient background in networking to then
explore security issues in next 3 lectures
— Networking = the Internet

« Complex topic with many facets

— We will omit concepts/details that aren’t very security-
relevant

— We'll mainly look at IP, TCP, DNS and DHCP

* Networking is full of abstractions
— Goal is for you to develop apt mental models /
analogies

— ASK questions when things are unclear

o (but we may skip if not ultimately relevant for security,
or postpone if question itself is directly about security)

Key Concept #1: Protocols

* A protocol is an

* Includes and
— How a communication is specified & structured
o Format, order messages are sent and received

— What a communication means
o Actions taken when transmitting, receiving, or timer expires

« E.g.: asking a question in lecture?

1.Raise your hand.

2.Wait to be called on.

3.0r: wait for speaker to pause and vocalize

4.1f unrecognized (after timeout): vocalize w/ "excuse me’,

Example: IP Packet Header

a-bit | 4-bit 8-bit _
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
i e o 3-bit i
16-bit Identification Flags | 13-bit Fragment Offset
bit Ti _
g I'_Oi':e ;?.I?Lt)o 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

IP = Internet Protocol

20-byte
header

Key Concept #2: Dumb Network

 Original Internet design: interior nodes (“routers”)
have no knowledge* of ongoing connections going
through them

* Not: how you picture the telephone system works
— Which internally tracks all of the active voice calls

* |Instead: the postal system!
— Each Internet message (“packet”) self-contained
— Interior “routers” look at destination address to forward
— If you want smarts, build it “end-to-end”

— Buys simplicity & robustness at the cost of shifting
complexity into end systems

* Today’s Internet is full of hacks that violate this 5

-

Key Concept #3: Layering

* Internet design is strongly partitioned into layers
— Each layer relies on services provided by next layer

below ...

— ... and provides services to layer above it

* Analogy:

— Consider structure of an
application you've written
and the “services” each
layer relies on / provides

Code You Write

Run-Time Library

System Calls

Fully
isolated
from user
programs

>

-

Internet Layering (“Protocol Stack™)

~N

7 Application
4 Transport

3 (Inter)Network
2

1 -

-

Layer 1: Physical Layer

Application

Transport

(Inter)Network

e

N W b~ N

Encoding bits to send them
over a single physical link
e.g. patterns of
voltage levels /
photon intensities /
RF modulation

-

Layer 2: Link Layer

Application

Transport

(Inter)Network

N W b~ N

1 -

Framing and transmission of a
collection of bits into individual
messages sent across a
single “subnetwork” (one
physical technology)

Might involve multiple physical
links (e.g., modern Ethernet)

Often technology supports
broadcast transmission (every
“node” connected to subnet
receives)

-

Layer 3: (Inter)Network Layer

Bridges multiple “subnets” to
provide end-to-end internet

connectivity between nodes
Application e Provides global addressing

Transport | |
Inter)Network \Works across different link
e s oy technologies

N w b~ N

Internet “hop”

_ Different for each
1 -

"

-

Layer 4: Transport Layer

Application

Transport

(Inter)Network

1 -

N W b~ N

<

End-to-end communication
between processes

Different services provided:
TCP = reliable byte stream
UDP = unreliable datagrams

"

-

Layer 7: Application Layer

N W b~ N

Application

Transport

(Inter)Network

Communication of whatever
you wish

Can use whatever
transport(s) is convenient

Freely structured

E.Q.:
Skype, SMTP (email),
HTTP (Web), Halo, BitTorrent

2

-

Internet Layering (“Protocol Stack™)

~

7 Application Implemented only at hosts,
not at interior routers

4 Transport (“dumb network”)

3 (Inter)Network

2

1 -

J

-

Internet Layering (“Protocol Stack™)

~

7 Application
4 Transport

3 (Inter)Network
2

Implemented everywhere

1 -

Y

-

Internet Layering (“Protocol Stack™)

N

Application

Transport

(Inter)Network } ~Same for each Internet “hop”

_ Different for each
1 - Internet “hop,,

N W b~ N

J

-

Hop-By-Hop vs. End-to-End Layers

Host A communicates with Host D

Router 1

Router 3

Router 7

Router 4

J

-

Hop-By-Hop vs. End-to-End Layers

Host A communicates with Host D

Host C

‘ Host E
Router 6 Router 7

Router 4 | \ _
i /

Different Physical & Link Layers (Layers 1 & 2)

)

-

Hop-By-Hop vs. End-to-End Layers

Host A communicates with Host D

Same Network / Transport / Application Layers (3/4/7)
(Routers ignore Transport & Application layers)

J

-

Layer 3: (Inter)Network Layer

Bridges multiple “subnets” to
provide end-to-end internet

connectivity between nodes
Application e Provides global addressing

Transport | |
Inter)Network \Works across different link
e s oy technologies

N w b~ N

1 -

J

-

IP Packet Structure

abit | 4-bit 8-bit _
Version | Header [Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: e e 3-bit _
16-bit Identification Flags | 13-bit Fragment Offset
8'3'::;’.;'.?;)0 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

-

IP Packet Structure

16-bit Identification Flags

/4_': 4-bit abit | _
Version | Header [Type of Service > 16-bit Total Length (Bytes)
\Length (w

3-bit

13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

IP Packet Header Fields

* Version number (4 bits)
— Indicates the version of the IP protocol
— Necessary to know what other fields to expect
— Typically “4” (for IPv4), and sometimes “6” (for IPv6)

* Header length (4 bits)

—Number of 32-bit words in the header
— Typically “5” (for a 20-byte IPv4 header)
— Can be more when IP options are used

* Type-of-Service (8 bits)
— Allow packets to be treated differently based on needs
—E.qg., low delay for audio, high bandwidth for bulk transfer

22

-

IP Packet Structure

abit | 4-bit 8-bit _
Version | Header [Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: e e 3-bit _
16-bit Identification Flags | 13-bit Fragment Offset
8'3'::;’.;'.?;)0 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Ah

32-bit Destination IP Address

IP Packet Header (Continued)

* Two |IP addresses
—Source |IP address (32 bits)
—Destination |IP address (32 bits)

* Destination address
—Unique identifier/locator for the receiving host
—Allows each node to make forwarding decisions

» Source address
—Unique identifier/locator for the sending host
—Recipient can decide whether to accept packet
—Enables recipient to send a reply back to source,,

-

IP: “Best Effort ” Packet Delivery

$O

* Routers inspect destination address, locate “next
hop” in forwarding table
— Address = ~unique identifier/locator for the receiving host

* Only provides a “/'ll give it a try” delivery service:
— Packets may be lost
— Packets may be corrupted
— Packets may be delivered out of order

Urce destination

L

5% B _

IP netwo/rE)J >

e

“Best Effort” is Lame! What to do?

* It's the job of our Transport (layer 4) protocols to
build services our apps need out of IP’'s modest
layer-3 service

26

-

Layer 4: Transport Layer

Application

Transport

(Inter)Network

1 -

N W b~ N

<

End-to-end communication
between processes

Different services provided:
TCP = reliable byte stream
UDP = unreliable datagrams

7

-

“Best Effort” is Lame! What to do?

* It's the job of our Transport (layer 4) protocols to
build services our apps need out of IP’'s modest
layer-3 service

* #1 workhorse: TCP (Transmission Control Protocol)

» Service provided by TCP:

— Connection oriented (explicit set-up / tear-down)

o End hosts (processes) can have multiple concurrent long-lived
communication

—Reliable, in-order, byte-stream delivery
o0 Robust detection & retransmission of lost data

%)

-

TCP “Bytestream” Service

Process A on host H1

oy

<
=+
(¢]

—

dq

0 949

os)
<
=+
(¢]
|

—+
(¢]
(U8

08 AAg

Process B
on host H2 ezl [| |

-

“Best Effort” is Lame! What to do?

* It's the job of our Transport (layer 4) protocols to
build services our apps need out of IP’'s modest
layer-3 service

 #1 workhorse: TCP (Transmission Control Protocol)

 TCP service:

— Connection oriented (explicit set-up / tear-down)

o End hosts (processes) can have multiple concurrent long-lived
dialog

—Reliable, in-order, byte-stream delivery
o0 Robust detection & retransmission of lost data

— Congestion control
o Dynamic adaptation to network path’s capacity

%

5 Minute Break

Questions Before We Proceed?

31

-

TCP Header

Source port

Destination port

Sequence number

Acknowledgment

HdrLen| 9 | Flags | Advertised window

Checksum

Urgent pointer

Options (variable)

Data

2

-

TCP Header

Ports are

associated /<i§)urce port Destination porL\/
with OS

processes Sequence number

Acknowledgment

HdrLen| 9 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

%

-

TCP Header

IP Header

Ports are

associated /v<
with OS

processes

IP source & destination
addresses plus TCP
source and destination
ports uniquely identifies
a TCP connection

"~ Source port

\

Destination port |

e

Sequence number

Acknowledgment

HdrLen| Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

Data

*

-

TCP Header

Ports are P— — —
associated /,< Source port Destination port >
with OS = —]
processes Sequence number
Acknowledgment

IP source & destination

addresses plus TCP HdrLen
source and destination _
ports uniquely identifies Checksum Urgent pointer

a TCP connection

0 | Flags | Advertised window

Options (variable)

Some port numbers are
“‘well known” / reserved
e.g. port 80 = HTTP Data

%)

-

TCP Header

Starting

sequence

number (byte _—Y
offset) of data
carried in this

packet

Z

Source port Destination port
L Sequence number />
Acknowledgment

HdrLen| 9 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

%

-

TCP Header

Starting Source port Destination port
sequence — —
number (byte /v<\ Sequence number />
offset) of data Acknowledgment
carried in this
packet HdrLen| 0 Flags | Advertised window
Checksum Urgent pointer
Byte stream
numbered Options (variable)
iIndependently in
each direction Data

)

-

TCP Header

Starting Source port Destination port
sequence — —
number (byte /v<\ Sequence number />
offset) of data Acknowledgment
carried in this
packet HdrLen| Flags | Advertised window
Checksum Urgent pointer
Byte stream
numbered Options (variable)

iIndependently in
each direction

Sequence number assigned to start
= Of Dyte stream is picked when
connection begins; doesn’t start at O

%

-

TCP Header

Source port Destination port
Acknowledgment Sequence number
gives seq # just oy Acknowledgment I
beyond highest <\ J />
seq. received in HdrLen| 9 | Flags | Advertised window
order.

Checksum Urgent pointer
It sender sends Options (variable)

N in-order bytes
starting at seq S
then ack for it will Data
be S+N.

J

-

TCP Header

Uses include:

acknowledging
data (“ACK")

setting up ("SYN”)
and closing

connections
(“F IN” and “RST”)

Source port

Destination port

Sequence number

Acknowledgment

Checksum

W%v(Flags) Advertised window

Urgent pointer

Options (variable)

Data

2

Establishing a TCP Connection

A B
SYN Each host tells its Initial
ACK Sequence Number
| SR (ISN) to the other host.

N (Spec says to pick based
Dayy, on local clock)
%

* Three-way handshake to establish connection
—Host A sends a SYN (open; “synchronize sequence

numbers”) to host B
—Host B returns a SYN acknowledgment (SYN+ACK)

—Host A sends an ACK to acknowledge the SYN+ACK 41

-

Timing Diagram: 3-Way Handshaking

Passive
_ Different starting Open
Active sequence numbers in
Open each direction Server
listen()

Client (initiator)

connect ()

Y, CK=X+1

SYN + ACK, SeqNum
47

ACK, ACk=y+ 1
accept ()

2

-

Layer 7: Application Layer

N W b~ N

Application

Transport

(Inter)Network

Communication of whatever
you wish

Can use whatever
transport(s) is convenient

Freely structured

E.Q.:
Skype, SMTP (email),
HTTP (Web), Halo, BitTorrent

Y

-

Sample Email (SMTP) interaction

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice(@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter ." on a line by itself
C: om: alice@crepes.fr

To: hamburger-list@burger-king.com
bject: Do you like ketchup?

C:
Qz:ggi:%bout pickles?

C: S

S: ZSB\Msfsage accepted for delivery
C: QUIT Lone period marks end of message
S: 2

21 hamburger.edu closing connection

(@]

Email body

Email header

)

Web (HTTP) Request

Method Resource HTTP version Headers
v v v /
GET /index.html HTTP/1.1 <

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

\
\ T Blank line

Data (if POST; none for GET)

GET: download data. POST: upload data. 45

Web (HTTP) Response

HTTP version Status code Reason phrase Headers

v S e

HTTP/1.0 200 OK /
Date: Sun, 19 Apr 2009 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

Content-Type: text/html

Last-Modified: Sat, 18 Apr 2009 17:39:05 GMT

Set-Cookie: session=44eb; path=/servlets
Content-Length: 2543 ‘(/////

<HTML> Some data... blah, blah, blah </HTML>

Data

46

Host Names vs. IP addresses

* Host names
—Examples: www.cnn.com and bbc.co.uk
—Mnemonic name appreciated by humans
—Variable length, full alphabet of characters
—Provide little (if any) information about location

* |P addresses
—Examples: 64.236.16.20 and 212.58.224.131
—Numerical address appreciated by routers
—Fixed length, binary number
—Hierarchical, related to host location

47

Mapping Names to Addresses

* Domain Name System (DNS)
—Hierarchical name space divided into zones
—Zones distributed over collection of DNS servers
—(Also separately maps addresses to names)

* Hierarchy of DNS servers
—Root (hardwired into other servers)
—Top-level domain (TLD) servers
—"Authoritative” DNS servers (e.g. for berkeley.edu)

48

4)
Mapping Names to Addresses

* Domain Name System (DNS)
—Hierarchical name space divided into zones
—Zones distributed over collection of DNS servers
—(Also separately maps addresses to names)

* Hierarchy of DNS servers
—Root (hardwired into other servers)
—Top-level domain (TLD) servers
—"Authoritative” DNS servers (e.g. for berkeley.edu)

» Performing the translations

—Each computer configured to contact a resolver@

-

Example

Host at xyz .poly.edu

wants |IP address for
gaia.cs.umass.edu

local DNS server

(resolver)
dns.poly.edu

2

requesting host
.edu

Xyz.poly

A

root DNS server ('.")

2
3
TLD
4

<

authoritative DNS server

DNS server (‘.edu’)
w (umass.edu’, ‘cs.umass.edu’)
dns.cs.umass.edu
@ gaia.cs.umass.edu
50

J

¢8

DNS Protocol

DNS protocol: query and reply messages, both with

same message format

(Mainly uses UDP transport rather than TCP)

Message header:

* |dentification: 16 bit # for
query, reply to query uses
same #

* Replies can include “Authority”
(name server responsible for
answer) and “Additional” (info
client is likely to look up soon
anyway)

* Replies have a Time To Live
(in seconds) for caching

16 bits 16 bits
Identification Flags

Questions # Answer RRs

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information
(variable # of resource records)

51

