
Paxson
Spring 2011

CS 161
Computer Security Discussion 1

January 26, 2011

Question 1 Buffer Overflow Mitigations
Buffer overflow mitigations generally fall into two categories: (i) eliminating the cause
and (ii) alleviating the damage. In lecture, we saw memory-safe languages and proofs as
examples for the first category. This question is about techniques in the second category.

Several requirements must be met for a buffer overflow to succeed. Each requirement
listed below can be combated with a different countermeasure. With each mitigation
you discuss, think about where it can be implemented—common targets include the
compiler and the operating system (OS). Also discuss limitations, pitfalls, and costs of
each mitigation.

(a) The attacker needs to overwrite the return address on the stack to change the
control flow. Is it possible to prevent this from happening or at least detect when
it occurs?

(b) The overwritten return address must point to a valid instruction sequence. The
attacker often places the malicious coe to execute in the vulnerable buffer. However,
the buffer address must be known to set up the jump target correctly. One way to
find out this address is to observe the program in a debugger. This works because
the address tends to same across multiple program runs. What could be done to
make it harder to accurately find out the address of the start of the malicious code?

(c) Attackers often store their malicious code in the same inside the buffer that they
overflow. What mechanism could prevent the execution of the malicious code?
What type of code would break with this defense in place?

Solution:

(a) Stack Canaries. A canary or canary word is a known value placed between the
local variables and control data on the stack. Before reading the return address,
the OS checks the canary against the known value. Because a successful buffer
overflows needs to overwrite the canary before reaching the return address,
but the attacker cannot predict its value, the canary validation will fail and
invalidate the return address.

Page 1 of 10

As an example, consider the following function.

void vuln()

{

char buf[n];

gets(buf);

}

The compiler will take this function and generate:

/* This number is randomly set before each run. */

int MAGIC = rand();

void vuln()

{

int canary = MAGIC;

char buf[n];

gets(buf);

if (canary != MAGIC)

HALT();

}

Limitations.

• Canaries only protect against stack smashing attacks, not against heap
overflows or format string vulnerabilities.

• Local variables, such as function pointers and authentication flags, can still
be overwritten.

• No protection against buffer underruns. This can be problematic in com-
bination with the previous point.

• If the attack occurs before the end of the function, the canary validation
does not even take place. This happens for example when an exception
handler on the stack gets invoked before the function returns.

• A canary generated from a low-entropy pool can be predictable. Recent
research showed that the Windows implementation only relies on 1 bit of
entropy [?].

Cost. The canary has to be validated on each function return. The performance
overhead is only a few percent since a canary is only needed in functions with

Discussion 1 Page 2 of 10 CS 161 – SP 11

local arrays. To determine whether to use the canary, Windows additionally
applies heuristics (which unfortunately can also be subverted [?].)

(b) Address Randomization. Precisely, this mitigation technique is called ad-
dress space layout randomization (ASLR). When OS loader puts an executable
into memory, it maps the different sections (text, data/BSS, heap, stack) to
fixed locations. Rather than deterministically allocating the process layout, the
idea behind ASLR to randomize the starting base of the sections to make it
more difficult for an attacker to prediction the addresses of jump targets. For
instance, the OS might decide to start stack frames from somewhere other than
the highest memory address.

Limitations.

• Entropy reduction attacks can significantly lower the efficacy of ASLR [?].
For example, reducing factors are page alignment requirements (stack: 16
bytes, heap: 4096 bytes).

• Address space information disclosure techniques can force applications to
leak known addresses (e.g., DLL addresses).

• Revealing addresses via brute-forcing can also be an effective technique
when an application does not terminate, e.g., when a block that catches
exceptions exists.

• Techniques known as heap spraying and JIT spraying [?] allow an attacker
to inject code at predictable locations.

• Like the canary defense, ASLR also does not defend against local data
manipulation.

• Not all applications work properly with ASLR. In Windows, some opt out
via the /DYNAMICBAS linker flag [?].

Cost. The overhead incurred by ASLR is negligible.

(c) Executable Space Protection. Modern CPUs include a feature to mark
certain memory regions non-executable. AMD calls this feature the NX (no
execute) bit and Intel the XD (execute disable) bit. The idea is to combat
buffer overflows where the attacker injects own code.

OpenBSD pioneered this technique in 2003 with W⊕X (write x-or execute),
which marks pages as either writable or executable, but not both at the same
time. Since service pack 2 in 2004, Windows features data execution prevention

Discussion 1 Page 3 of 10 CS 161 – SP 11

(DEP), an executable space protection mechanism that uses the NX or XD bit
to mark pages, which are intended to only contain data, as non-executable.

Limitations.

• An attacker does not have to inject its own code. It is also possible to
leverage existing instruction sequences in memory and jumpt to them. See
part Question 2 for details.

• The defense mechanism disallows execution of code generated at runtime,
such as during JIT compilation or self-modifying code (SMC).

• If code is loaded at predictable addresses, it is possible to turn non-executable
into executable code, e.g., via system functions like VirtualAlloc or
VirtualProtect on Windows [?].

Cost. There is no measurable overhead due to the hardware support of modern
CPUs.

Question 2 Arc Injection
Imagine that you are trying to exploit a buffer overflow, but you notice that none of the
code you are injecting will execute for some reason. How frustrating! You still really
want to run some malicious code, so what could you try instead?

Hint: In a stack smashing attack, you can overwrite the return address with any address
of your choosing.

Solution: Rather than injection code, the main idea of arc injection is to inject
data. It is powerful technique to that bypasses numerous protection mechanisms, in
particular executable space protection (Question 1c). By injecting malicious data
that existing instructions later operates on, an attacker can still manipulate the
execution path.

For example, an attacker can overwrite the return address with a function in libc,
such as system(const char* cmd) whose single argument cmd is the new program
to spawn. The attacker also has to setup the arguments (i.e., the data) appropri-
ately. Recall that function arguments are pushed in reverse order on the stack before
pushing the return address. Consider the example below, where an attacker over-
writes the return address with the address of system (denoted by &system) to spawn
a shell.

Discussion 1 Page 4 of 10 CS 161 – SP 11

rip

sfp

buffer

esp &system

padding

dummy

&"/bin/sh"

esp &system

padding

return addr

&"/bin/sh"

esp

The first figure on the left is the stack layout before the attack. The second figure in
the middle represents the state after having overflowed the buffer. Here, the return
address is overwritten with &system. The value above is the location of the return
address, from the perspective of system’s stack frame. But since the attacker plans
on spawning a shell that blocks to take evil commands (e.g., rm -rf /), this value
will never be used — hence any dummy value will suffice. The argument to system

is the address of attacker-supplied data, in this case a pointer to the string /bin/sh.
Finally, the third figure displays the stack state after transferring control to system,
which happend by popping &system into the program counter (and decrementing the
stack pointer). At this point, the attacker can execute commands using the shell.

A more sophisticated version of arc injection is called return-oriented programming
(ROP) [?]. It is based on the observations that the virtual memory space (which
has the C library) offers many little code snippets, gadgets, that can be parsed as a
valid sequence of instructions and end with a ret instruction. Recall that the ret

instruction is equivalent to popl %eip, i.e., it writes the top of the stack into the
program counter. The attacker does not even have to jump to the start of a function,
any arbitrary location in the middle works as long as it terminates with a ret.

Shacham et al. showed that these small gadgets can be combined to perform arbitrary
computation. In our above example, a basic combination of two gadgets would
involve writing the starting address of the next gadget at the value of dummy. When
the first gadget finishes, the next one is loaded by executing ret.

Setting up the stack is very tricky to get right manually, but the paper referenced
above actually wrote a compiler to transform code from a language as expressive as
C-like into mixture of gadgets to be pushed on the stack!

Discussion 1 Page 5 of 10 CS 161 – SP 11

Question 3 Reasoning about Memory Safety
Consider the following C code:

int sanitize(char s[], size_t n)

{

size_t i = 0, j = 0;

while (j < n)

{

if (issafe(s[j]))

{

s[i] = s[j];

i++; j++;

}

else

{

j++;

}

}

return i;

}

int issafe(char c)

{

return (’a’ <= c && c <= ’z’) || (’0’ <= c && c <= ’9’) || (c == ’_’);

}

We’d like to know the conditions under which sanitize is memory-safe, and then prove
it.

On the next page, you can find the same code again, but with blank spaces that you
need to fill in. Find the blank space labelled requires and fill it in with the precondition
that’s required for sanitize to be memory-safe. (If several preconditions are valid, you
should list the most general precondition under which it is memory-safe.)

Also, on the next page fill in the four blanks inside sanitize with invariants, so that
(i) each invariant is guaranteed to be true whenever that point in the code is reached,
assuming that all of sanitize’s callers respect the precondition that you identified, and
(ii) your invariants suffice to prove that sanitize is memory-safe, assuming that it is
called with an argument that satisfies the precondition that you identified.

Discussion 1 Page 6 of 10 CS 161 – SP 11

Here is the same C code again, this time with space for you to fill in the precondition
and four invariants.

/* requires: __ */

int sanitize(char s[], size_t n)

{

size_t i = 0, j = 0;

while (j < n)

{

/* invariant: ___ */

if (issafe(s[j]))

{

s[i] = s[j];

i++; j++;

/* invariant: ___ */

}

else

{

j++;

/* invariant: ___ */

}

/* invariant: ___ */

}

return i;

}

int issafe(char c)

{

return (’a’ <= c && c <= ’z’) || (’0’ <= c && c <= ’9’) || (c == ’_’);

}

Discussion 1 Page 7 of 10 CS 161 – SP 11

Solution:

Since the goal is to prove memory safety the key is to identify points in the code
where this property can get violated. In this particular example, only the array
accesses s[i] or s[j] can violate our property. In another program, the function
fgets could be our point of interest. This first step is key but easy to forget in a
some corner code point.

Now, we can write down the precondition for these points of interest, in our case all
the array accesses. This is simple. Here’s an example:

/* requires: s!= NULL && 0 <= j < size (s)*/

issafe(s[j])

Note that we only wrote down the condition for this particular array access, ignoring
everything else in the program. Similarly, conditions can be written for all the other
points in the program.

The intuition for the rest of the proof construction is that we want to go up one line
of code at a time, modifying our precondition appropriately. In the absence of loops,
this is usually trivial. For example, consider the following modified function:

int sanitize(char s[], size_t n)

{

int j=0;

/* requires: s != NULL && -1 <= j < size(s) - 1 */

j++;

/* requires: s != NULL && 0 <= j < size (s) */

if (issafe(s[j]))

printf("safe!");

}

The last precondition is the same as our example, and we have just gone up line by
line appropriately modifying the program. Try and write down the precondition for
the topmost line. It should be

requires: s != NULL && 1 < size(s).

The precondition for the top most line is also the precondition for the function.

With loops, things are more difficult. This isn’t surprising: loops are what make
computers powerful after all. Key to writing proofs for loops is coming up with a
loop invariant.

Discussion 1 Page 8 of 10 CS 161 – SP 11

A loop invariant is a property that is true before the start of the loop and remains
true in each iteration of the loop as well as at the end of the loop. This is the non-
mechanistic part: writing invariants requires creativity and, like real mathematical
proofs, there is a certain art and experience involved. But for this question in par-
ticular, the invariant is not that hard, viz. 0 <= i <= j <= n. Take a look at the
code and make sure you understand why this is a correct invariant for the loop. In
particular, the j <= n is less or equal and not lesser than, since the loop invariant
has to be true at the end of the loop too.

Combined with our preconditions for array access memory safety, we get the safety
precondition for the loop as

s != NULL && 0<= i <= j <= n <= size(s).

An interesting exercise here is to change the loop condition from j < n to j < 3.
How does the loop invariant and the loop precondition change?

Now we can proceed with our mechanistic work and go back up one more line of
code to get the precondition for the topmost line of code. We get

s != NULL && 0 < n <= size(s).

The initialization of i and j to zero means that we don’t have to worry about the
value of i and j before the execution of the first line of code.

We are done! The precondition for the topmost line of code is also the precondition
for the function. The complete annotated program, with the other invariants is
below:

/* (a) requires: s != NULL && 0 < n <= size(s) */

int sanitize(char s[], size_t n)

{

size_t i = 0, j = 0;

while (j < n)

{

/* (b) invariant: s != NULL && 0 <= i <= j <= n <= size(s) */

if (issafe(s[j]))

{

s[i] = s[j];

i++; j++;

/* (c) invariant: s != NULL && 0 < i <= j <= n <= size(s) */

}

Discussion 1 Page 9 of 10 CS 161 – SP 11

else

{

j++;

/* (d) invariant: s != NULL && 0 <= i < j <= n <= size(s) */

}

/* (e) invariant: s != NULL && 0 <= i <= j <= n <= size(s) */

}

return i;

}

Note how the invariant changes after the increments to i and j.

Another exercise for elucidation is to replace all s[i] and s[j] with, say, s[3]. How
does the function precondition change?

A final note: do not hesitate to ask for help! Our office hours exist to help you. Please
visit us if you have any questions or doubts about the material.

Discussion 1 Page 10 of 10 CS 161 – SP 11

