
Paxson
Spring 2011

CS 161
Computer Security

3/15

Asymmetric cryptography

Previously we saw symmetric-key cryptography, where Alice and Bob share a secret key K.
However, symmetric-key cryptography can be inconvenient to use, because it requires Alice
and Bob to get together in advance to establish the key somehow. Asymmetric cryptography,
also known as public-key cryptography, is designed to address this problem.

In a public-key cryptosystem or asymmetric cryptosystem, the recipient Bob has a publicly
available key, his public key, that everyone can access. When Alice wishes to send him a
message, she uses his public key to encrypt her message. Bob also has a secret key, his
private key, that lets him decrypt these messages. Bob publishes his public key but does not
tell anyone his private key (not even Alice).

Public-key cryptography provides a nice way to help with the key management problem.
Alice can pick a secret key K for some symmetric-key cryptosystem, then encrypt K under
Bob’s public key and send Bob the resulting ciphertext. Bob can decrypt using his private key
and recover K. Then Alice and Bob can communicate using a symmetric-key cryptosystem,
using K as their shared key, from there on.

Public-key cryptography is a remarkable thing. Consider the function that, for a given public
key, maps the message to the corresponding ciphertext. In a good public-key cryptosystem,
this function must be easy to compute, and yet very hard to invert. In other words, it
must form a one-way function: a function f such that given x, it is easy to compute f(x),
but given y, it is hard to find a value x such that f(x) = y. We need the computational
equivalent of a process that turns a cow into hamburger: given the cow, you can produce a
hamburger, but there’s no way to restore the original cow from the hamburger. It is by no
means obvious that it should be possible to accomplish this, but it turns out it is, as we’ll
soon discuss.

The known methods for public-key cryptography tend to rely heavily upon number theory,
so we begin with a brief number theory refresher, and then develop an encryption algorithm
based on public-key cryptography.

1 Algorithms for modular arithmetic

1.1 Simple modular arithmetic

Two n-bit integers can be added, multiplied, or divided by mimicking the usual manual
techniques which are taught in elementary school. For addition, the resulting algorithm

3/15 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 1 of 7



takes a constant amount of time to produce each bit of the answer, since each such step
only requires dealing with three bits—two input bits and a carry—and anything involving
a constant number of bits takes O(1) time. The overall time to add two n-bit integers is
therefore O(n), or linear in the bitlength of the integers. Multiplication and division take
O(n2) time, i.e., quadratic time. Also recall that n, the number of bits it takes to represent
an integer a in binary, satisfies n ≤ dlog2 ae.

Recall that a mod p is the remainder of the number a modulo p. For instance, 37 mod 10 = 7.

Modular arithmetic can be implemented naturally using addition, multiplication, and divi-
sion algorithms. To compute a mod p, simply return the remainder upon dividing a by p.
By reducing all inputs and answers modulo p, modular addition, subtraction, and multipli-
cation are easily performed. These operations can all be performed in O(log2 p) time, since
the numbers involved never grow beyond p and therefore have size at most dlog2 pe bits.

1.2 Modular exponentiation

Modular exponentiation is the task of computing ab mod p, given a, b, and p.

A naive algorithm for modular exponentiation is to repeatedly multiply by a modulo p,
generating the sequence of intermediate products a2 mod p, a3 mod p, a4 mod p, . . . , ab mod
p. Each intermediate product can be computed from the prior one with a single modular
multiplication, which takes O(log2 p) time to compute, so the overall running time to compute
ab mod p products is O(b log2 p). This is exponential in the size (bitlength) of b, and thus
really slow when b is large.

There is a better way to do it. The key to an efficient algorithm is to notice that the exponent
of a number aj can be doubled quickly, by multiplying the number by itself. Starting with
a and squaring repeatedly, we get the powers a1, a2, a4, a8, . . . , a2

blog2 bc
, all modulo p. Each

takes just O(log2 p) time to compute, and they are all we need to determine ab mod p: we
just multiply together an appropriate subset of them, those corresponding to ones in the
binary representation of b. For instance,

a25 = a110012 = a100002 · a10002 · a12 = a16 · a8 · a1.

This repeated squaring algorithm is shown in Algorithm 1. The overall running time is
O(log2 p log b). When p and b are n-bit integers, the running time is cubic in the input size.
This is efficient enough that we can easily perform modular exponentiation on numbers that
are thousands of bits long.

3/15 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 2 of 7



Algorithm 1 ModExp1(a, b, p). A repeated squaring procedure for modular exponentiation.

Require: a modulus p, a positive integer a < p, and a positive exponent b
Ensure: ab mod p
1: Let bn−1 · · · b1b0 be the binary form of b, where n = dlog2 be.

// Compute the powers ti = a2
i

mod s.
2: t0 := a mod p
3: for i := 1 to n− 1 do
4: ti := t2i−1 mod p
5: end for

// Multiply together a subset of these powers.
6: r := 1
7: for i := 0 to n− 1 do
8: if bi = 1 then
9: r := r × ti mod p
10: end if
11: end for
12: return r

1.3 Selecting Large Primes

In the material to follow, we will be working with very large primes: primes that are thou-
sands of bits long. Let’s look at how to generate a random n-bit prime.

It turns out that it’s easy to test whether a given number is prime. Fermat’s Little Theorem
forms the basis of a kind of litmus test which helps decide whether a number is prime or not:
to test if a number M is prime, we select an a mod M at random and compute aM−1 mod M .
If the result is not 1, then by Fermat’s theorem it follows that M is not a prime. If on the
other hand the result is 1, then this provides evidence that M is indeed prime. With a little
more work this forms the basis of an efficient probabilistic algorithm for testing primality.

For the purpose of selecting a random large prime (several thousand bits long), it suffices to
pick a random number of that length, test it for primality, and repeat until we find a prime
of the desired length. The prime number theorem tell us that among the n-bit numbers,
roughly a 1.44

n
fraction of them are prime. So after O(n) iterations of this procedure we

expect to find a prime of the desired length.

3/15 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 3 of 7



2 Diffie-Hellman key exchange

Now we’re ready to see our first public-key algorithm. Suppose Alice and Bob are on opposite
sides of a crowded room. They can shout to each other, but everyone else in the room will
overhear them. They haven’t thought ahead to exchange a secret key in advance. How can
they hold a private conversation?

It turns out there is a clever way to do it, first discovered by Whit Diffie and Marti Hellman
in the 1970s. In high-level terms, the Diffie-Hellman key exchange works like this.

Alice and Bob first do some work to establish a few parameters. They somehow agree on
a large prime p. For instance, Alice could pick p randomly and then announce it so Bob
learns p. The prime p does not need to be secret; it just needs to be very large. Also, Alice
and Bob somehow agree on a number g in the range 1 < g < p − 1. The values p and g
are parameters of the scheme that could be hardcoded or identified in some standard; they
don’t need to be specific to Alice or Bob in any way, and they’re not secret.

Then, Alice picks a secret value a at random from the set {0, 1, . . . , p−2}, and she computes
A = ga mod p. At the same time, Bob randomly picks a secret value b and computes
B = gb mod p. Now Alice announces the value A (keeping a secret), and Bob announces B
(keeping b secret). Alice uses her knowledge of B and a to compute

S = Ba mod p.

Symmetrically, Bob uses his knowledge of A and b to compute

S = Ab mod p.

Note that
Ba = (gb)a = gab = (ga)b = Ab (mod p),

so both Alice and Bob end up with the same result, S. Finally, Alice and Bob can use S
as a shared key for a symmetric-key cryptosystem (in practice, we would apply some hash
function to S first and use the result as our shared key, for technical reasons).

The amazing thing is that Alice and Bob’s conversation is entirely public, and from this
public conversation, they both learn this secret value S—yet eavesdroppers who hear their
entire conversation cannot learn S. As far as we know, there is no efficient algorithm to
deduce S = gab mod p from A = ga mod p, B = gb mod p, g, and p. (If there were an
efficient algorithm to recover S from A,B, p, g, then this scheme would be insecure, because
an eavesdropper could simply apply that algorithm to what she overhears.) In particular,

the fastest known algorithms for solving this problem take 2cn1/3 log2/3 n time, if p is a n-bit
prime. For n = 2048, these algorithms are far too slow to allow reasonable attacks.

3/15 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 4 of 7



The security of Diffie-Hellman key exchange relies upon the fact that the following function
is one-way: f(x) = gx mod p. In particular, it is easy to compute f(·) (that’s just modular
exponentiation), but there is no known algorithm for computing f−1(·) in any reasonable
amount of time.

Here is how this applies to secure communication among computers. In a computer network,
each participant could pick a secret value x, compute X = gx mod p, and publish X for all
time. Then any pair of participants who want to hold a conversation could look up each
other’s public value and use the Diffie-Hellman scheme to agree on a secret key known only
to those two parties. Thus, the work of picking p, g, x, and X can be done in advance, and
each time a new pair of parties want to communicate, they each perform only one modular
exponentiation. Thus this can be an efficient way to set up shared keys.

Here is a summary of Diffie-Hellman key exchange:

• System parameters: a 2048-bit prime p, a value g in the range 2 . . . p− 2. Both are
arbitrary, fixed, and public.

• Key agreement protocol: Alice randomly picks a in the range 0 . . . p− 2 and sends
A = ga mod p to Bob. Bob randomly picks b in the range 0 . . . p − 2 and sends
B = gb mod p to Alice. Alice computes K = Ba mod p. Bob computes K = Ab mod p.
Alice and Bob both end up with the same secret key K, yet as far as we know no
eavesdropper can recover K in any reasonable amount of time.

3 El Gamal encryption

The Diffie-Hellman protocol doesn’t quite deliver public-key encryption directly. It allows
Alice and Bob to agree on a key that they then use with symmetric cryptography. An
interactive protocol for agreeing on a secret key (like Diffie-Hellman) is somewhat different
from a non-interactive algorithm for encrypting messages.

There are also public-key cryptography algorithms that can directly support encryption, if
desired. One of these is RSA, which you encountered in CS 70 (and in lecture this week).
To cement the idea, here’s another scheme for doing so that’s actually a slight twist on
Diffie-Hellman.

In 1985, a cryptographer by the name of Taher Elgamal invented a public-key encryption
algorithm based on Diffie-Hellman. El Gamal encryption works as follows. The system
parameters are a large prime p and a value g satisfying 1 < g < p− 1, as in Diffie-Hellman.
Bob chooses a random value b (satisfying 0 ≤ b ≤ p−2) and computes B = gb mod p. Bob’s
public key is B, and his private key is b. Bob publishes B to the world, and keeps b secret.

3/15 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 5 of 7



Now, suppose Alice has a message m (in the range 1 . . . p−1) she wants to send to Bob, and
suppose Alice knows that Bob’s public key is B. To encrypt the message m to Bob, Alice
picks a random value r (in the range 0 . . . p− 2), and forms the ciphertext

(gr mod p,m×Br mod p).

Note that the ciphertext is a pair of numbers, each number in the range 0 . . . p− 1.

How does Bob decrypt? Well, let’s say that Bob receives a ciphertext of the form (R, S). To
decrypt it, Bob computes

R−b × S mod p,

and the result is the message m Alice sent him. Why does this decryption procedure work?
If R = gr mod p and S = m×Br mod p (as should be the case if Alice encrypted the message
m properly), then

R−b × S = (gr)−b × (m×Br) = g−rb ×m× gbr = m (mod p).

If you squint your eyes just right, you might notice that El Gamal encryption is basically
Diffie-Hellman, tweaked slightly. It’s a Diffie-Hellman key exchange, where Bob uses his long-
term public key B and where Alice uses a fresh new public key R = gr mod p chosen anew
just for this exchange. They derive a shared key K = grb = Br = Rb (mod p). Then, Alice
encrypts her message m by multiplying it by the shared key K modulo p. That last step is
in effect a funny kind of one-time pad, where we use multiplication modulo p instead of xor:
here K is the key material for the one-time pad, and m is the message, and the ciphertext
is S = m ×K = m × Br mod p. Since Alice chooses a new value r independently for each
message she encrypts, we can see that the one-time pad is indeed used only once. And a
one-time pad using modular multiplication is just as secure as xor, for essentially the same
reason that a one-time pad with xor is secure: given any ciphertext S and a hypothesized
message m, there is exactly one key K that is consistent with this hypothesis (i.e., exactly
one value of K satisfying S = m×K mod p).

Here is a summary of El Gamal encryption:

• System parameters: a 2048-bit prime p, a value g in the range 2 . . . p− 2. Both are
arbitrary, fixed, and public.

• Key generation: Bob picks b in the range 0 . . . p − 2 randomly, and computes B =
gb mod p. His public key is B and his private key is b.

• Encryption: EB(m) = (gr mod p,m × Br mod p) where r is chosen randomly from
0 . . . p− 2.

• Decryption: Db(R, S) = R−b × S mod p.

3/15 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 6 of 7



4 Caveat: Don’t try this at home!

A brief warning is in order here. You’ve now seen the conceptual basis underlying public-
key algorithms that are widely used in practice. However, if you should need a public-
key encryption algorithm, don’t implement your own based on the description here. The
discussion has omitted some nitty-gritty implementation details that all that relevant at
the conceptual level, but are essential for robust security. Instead of implementing these
algorithms yourself, you should just use a well-tested cryptographic library, such as OpenSSL.

5 What’s the catch?

This all sounds great—almost too good to be true. We have a way for a pair of strangers who
have never met each other in person to communicate securely with each other. Unfortunately,
it is indeed too good to be true. There is a slight catch. The catch is that if Alice and
Bob want to communicate securely using these public-key methods, they need some way to
securely learn each others’ public key. The algorithms presented here don’t help Alice figure
out what is Bob’s public key; she’s on her own for that.

You might think all Bob needs to do is broadcast his public key, for Alice’s benefit. However,
that’s not secure against active attacks. Attila the attacker could broadcast his own public
key, pretending to be Bob: he could send a spoofed broadcast message that appears to be
from Bob, but that contains a public key that Attila generated. If Alice trustingly uses that
public key to encrypt messages to Bob, then Attila will be able to intercept Alice’s encrypted
messages and decrypt them using the private key Attila chose.

What this illustrates is that Alice needs a way to obtain Bob’s public key through some
channel that she is confident cannot be tampered with. That channel does not need to
protect the confidentiality of Bob’s public key, but it does need to ensure the integrity of
Bob’s public key. It’s a bit tricky to achieve this.

One possibility is for Alice and Bob to meet in person, in advance, and exchange public keys.
Some computer security conferences have “key-signing parties” where like-minded security
folks do just that. In a similar vein, some cryptographers print their public key on their
business cards. However, this still requires Alice and Bob to meet in person in advance. Can
we do any better? We’ll soon see some methods that help somewhat with that problem.

3/15 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 7 of 7


	Algorithms for modular arithmetic
	Simple modular arithmetic
	Modular exponentiation
	Selecting Large Primes

	Diffie-Hellman key exchange
	El Gamal encryption
	Caveat: Don't try this at home!
	What's the catch?

